AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Mn3O4 nanoparticles@reduced graphene oxide composite: An efficient electrocatalyst for artificial N2 fixation to NH3 at ambient conditions

Hong Huang1,§Feng Gong3,§Yuan Wang1Huanbo Wang2Xiufeng Wu1,4Wenbo Lu4Runbo Zhao1Hongyu Chen1Xifeng Shi5Abdullah M. Asiri6Tingshuai Li3Qian Liu3Xuping Sun1( )
Institute of Fundamental and Frontier Sciences,University of Electronic Science and Technology of China,Chengdu,610054,China;
School of Environment and Resource,Southwest University of Science and Technology,Mianyang,621010,China;
School of Materials and Energy,University of Electronic Science and Technology of China,Chengdu,611731,China;
Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education),School of Chemistry and Material Science, Shanxi Normal University,Linfen,041004,China;
College of Chemistry,Chemical Engineering and Materials Science, Shandong Normal University,Jinan,250014,China;
Chemistry Department, Faculty of Science & Center of Excellence for Advanced Materials Research,King Abdulaziz University,P.O. Box 80203, Jeddah,21589,Saudi Arabia;

§ Hong Huang and Feng Gong contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Currently, industrial-scale NH3 production almost relies on energy-intensive Haber-Bosch process from atmospheric N2 with large amount of CO2 emission, while low-cost and high-efficient catalysts are demanded for the N2 reduction reaction (NRR). In this study, Mn3O4 nanoparticles@reduced graphene oxide (Mn3O4@rGO) composite is reported as an efficient NRR electrocatalyst with excellent selectivity for NH3 formation. In 0.1 M Na2SO4 solution, such catalyst obtains a NH3 yield of 17.4 μg·h-1·mgcat.-1 and a Faradaic efficiency of 3.52% at -0.85 V vs. reversible hydrogen electrode. Notably, it also shows high electrochemical stability during electrolysis process. Density functional theory (DFT) calculations also demonstrate that the (112) planes of Mn3O4 possess superior NRR activity.

Electronic Supplementary Material

Download File(s)
12274_2019_2352_MOESM1_ESM.pdf (4.5 MB)

References

1

Service, R. F. Chemistry. New recipe produces ammonia from air, water, and sunlight. Science 2014, 345, 610.

2

Schlögl, R. Catalytic synthesis of ammonia-A "never-ending story"? Angew. Chem., Int. Ed. 2003, 42, 2004-2008.

3

Smil, V. Detonator of the population explosion. Nature 1999, 400, 415.

4

Rafiqul, I.; Weber, C.; Lehmann, B.; Voss, A. Energy efficiency improvements in ammonia production-Perspectives and uncertainties. Energy 2005, 30, 2487-2504.

5

Jennings, J. R. Catalytic Ammonia Synthesis: Fundamentals and Practice; Spring: Boston, 1991.

6

Chen, G. F.; Ren, S. Y.; Zhang, L. L.; Cheng, H.; Luo, Y. R.; Zhu, K. H.; Ding, L. X.; Wang, H. H. Advances in electrocatalytic N2 reduction-Strategies to tackle the selectivity challenge. Small Methods, in press, DOI: 10.1002/smtd.201800337.

7

Shipman, M. A.; Symes, M. D. Recent progress towards the electrosynthesis of ammonia from sustainable resources. Catal. Today 2017, 286, 57-68.

8

Kyriakou, V.; Garagounis, I.; Vasileiou, E.; Vourros, A.; Stoukides, M. Progress in the electrochemical synthesis of ammonia. Catal. Today 2017, 286, 2-13.

9

Bao, D.; Zhang, Q.; Meng, F. L.; Zhong, H. X.; Shi, M. M.; Zhang, Y.; Yan, J. M.; Jiang, Q.; Zhang, X. B. Electrochemical reduction of N2 under ambient Conditions for artificial N2 fixation and renewable energy storage using N2/NH3 cycle. Adv. Mater. 2017, 29, 1604799.

10

Huang, H. H.; Xia, L.; Shi, X. F.; Asiri, A. M.; Sun, X. P. Ag nanosheets for efficient electrocatalytic N2 fixation to NH3 under ambient conditions. Chem. Commun. 2018, 54, 11427-11430.

11

Liu, H. M.; Han, S. H.; Zhao, Y.; Zhu, Y. Y.; Tian, X. L.; Zeng, J. H.; Jiang, J. X.; Xia, B. Y.; Chen, Y. Surfactant-free atomically ultrathin rhodium nanosheet nanoassemblies for efficient nitrogen electroreduction. J. Mater. Chem. A 2018, 6, 3211-3217.

12

Zhang, R.; Ren, X.; Shi, X. F.; Xie, F. Y.; Zheng, B. Z.; Guo, X. D.; Sun, X. P. Enabling effective electrocatalytic N2 conversion to NH3 by the TiO2 nanosheets array under ambient conditions. ACS Appl. Mater. Interfaces 2018, 10, 28251-28255.

13

Zhang, L.; Ren, X.; Luo, Y. L.; Shi, X. F.; Asiri, A. M.; Li, T. S.; Sun, X. P. Ambient NH3 synthesis via electrochemical reduction of N2 over cubic sub-micron SnO2 particles. Chem. Commun. 2018, 54, 12966-12969.

14

Luo, Y. R.; Chen, G. F.; Ding, L.; Chen, X. Z.; Ding, L. X.; Wang, H. H. Efficient electrocatalytic N2 fixation with MXene under ambient conditions. Joule 2019, 3, 279-289.

15

Lv, C. D.; Yan, C. S.; Chen, G.; Ding, Y.; Sun, J. X.; Zhou, Y. S.; Yu, G. H. An amorphous noble-metal-free electrocatalyst that enables nitrogen fixation under ambient conditions. Angew. Chem., Int. Ed. 2018, 57, 6073-6076.

16

Yang, D. S.; Chen, T.; Wang, Z. J. Electrochemical reduction of aqueous nitrogen (N2) at a low overpotential on (110)-oriented Mo nanofilm. J. Mater. Chem. A 2017, 5, 18967-18971.

17

Han, J. R.; Liu, Z. C.; Ma, Y. J.; Cui, G. W.; Xie, F. Y.; Wang, F. X.; Wu, Y. P.; Gao, S. Y.; Xu, Y. H.; Sun, X. P. Ambient N2 fixation to NH3 at ambient conditions: Using Nb2O5 nanofiber as a high-performance electrocatalyst. Nano Energy 2018, 52, 264-270.

18

Li, X. H.; Li, T. S.; Ma, Y. J.; Wei, Q.; Qiu, W. B.; Guo, H. R.; Shi, X. F.; Zhang, P.; Asiri, A. M.; Chen, L. et al. Boosted electrocatalytic N2 reduction to NH3 by defect-rich MoS2 nanoflower. Adv. Energy Mater. 2018, 8, 1801357.

19

Zhu, X. J.; Liu, Z. C.; Liu, Q.; Luo, Y. L.; Shi, X. F.; Asiri, A. M.; Wu, Y. P.; Sun, X. P. Efficient and durable N2 reduction electrocatalysis under ambient conditions: β-FeOOH nanorods as a non-noble-metal catalyst. Chem. Commun. 2018, 54, 11332-11335.

20

Cheng, H.; Ding, L. X.; Chen, G. F.; Zhang, L. L.; Xue, J.; Wang, H. H. Molybdenum carbide nanodots enable efficient electrocatalytic nitrogen fixation under ambient conditions. Adv. Mater. 2018, 30, 1803694.

21

Zhang, Y.; Qiu, W. B.; Ma, Y. J.; Luo, Y. L.; Tian, Z. Q.; Cui, G. W.; Xie, F. Y.; Chen, L.; Li, T. S.; Sun, X. P. High-performance electrohydrogenation of N2 to NH3 catalyzed by multishelled hollow Cr2O3 microspheres under ambient conditions. ACS Catal. 2018, 8, 8540-8544.

22

Zhao, J. X.; Zhang, L.; Xie, X. Y.; Li, X. H.; Ma, Y. J.; Liu, Q.; Fang, W. H.; Shi, X. F.; Cui, G. L.; Sun, X. P. Ti3C2Tx (T = F, OH) MXene nanosheets: Conductive 2D catalysts for ambient electrohydrogenation of N2 to NH3. J. Mater. Chem. A 2018, 6, 24031-24035.

23

Chen, G. F.; Cao, X. R.; Wu, S. Q.; Zeng, X. Y.; Ding, L. X.; Zhu, M.; Wang, H. H. Ammonia electrosynthesis with high selectivity under ambient conditions via a Li+ incorporation strategy. J. Am. Chem. Soc. 2017, 139, 9771-9774.

24

Wu, X. F.; Xia, L.; Wang, Y.; Lu, W. B.; Liu, Q.; Shi, X. F.; Sun, X. P. Mn3O4 nanocube: An efficient electrocatalyst toward artificial N2 fixation to NH3. Small 2018, 14, 1803111.

25

Wang, H. L.; Cui, L. F.; Yang, Y.; Casalongue, H. S.; Robinson, J. T.; Liang, Y. Y.; Cui, Y.; Dai, H. J. Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries. J. Am. Chem. Soc. 2010, 132, 13978-13980.

26

Di Blasi, A.; Busaccaa, C.; Di Blasia, O.; Briguglioa, N.; Squadritoa, G.; Antonuccia, V. Synthesis of flexible electrodes based on electrospun carbon nanofibers with Mn3O4 nanoparticles for vanadium redox flow battery application. Appl. Energy 2017, 190, 165-171.

27

Qu, L. T.; Liu, Y.; Baek, J. B.; Dai, L. M. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 2010, 4, 1321-1326.

28

Xing, Z. C.; Chu, Q. X.; Ren, X. B.; Tian, J. Q.; Asiri, A. M.; Alamry, K. A.; Al-Youbi, A. O.; Sun, X. P. Biomolecule-assisted synthesis of nickel sulfides/reduced graphene oxide nanocomposites as electrode materials for supercapacitors. Electrochem. Commun. 2013, 32, 9-13.

29

Yang, S. B.; Zhi, L. J.; Tang, K.; Feng, X. L.; Maier, J.; Müllen, K. Efficient synthesis of heteroatom (N or S)-doped graphene based on ultrathin graphene oxide-porous silica sheets for oxygen reduction reactions. Adv. Funct. Mater. 2012, 22, 3634-3640.

30

Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen S. T.; Ruoff, R. S. Graphene-based composite materials. Nature 2006, 442, 282-286.

31

Wang, J. G.; Jin, D. D.; Zhou, R.; Li, X.; Liu, X. R.; Shen, C.; Xie, K. Y.; Li, B. H.; Kang, F. Y.; Wei, B. Q. Highly flexible graphene/Mn3O4 nanocomposite membrane as advanced anodes for li-ion batteries. ACS Nano 2016, 10, 6227-6234.

32

Zhang, X. X.; Liu, Q.; Shi, X. F.; Asiri, A. M.; Luo, Y. L.; Sun, X. P.; Li, T. S. TiO2 nanoparticles-reduced graphene oxide hybrid: An efficient and durable electrocatalyst toward artificial N2 fixation to NH3 under ambient conditions. J. Mater. Chem. A 2018, 6, 17303-17306.

33

Kibsgaard, J.; Tsai, C.; Chan, K. R.; Benck, J. D.; Nørskov, J. K.; Abild-Pedersen, F.; Jaramillo, T. F. Designing an improved transition metal phosphide catalyst for hydrogen evolution using experimental and theoretical trends. Energy Environ. Sci. 2015, 8, 3022-3029.

34

Popczun, E. J.; McKone, J. R.; Read, C. G.; Biacchi, A. J.; Wiltrout, A. M.; Lewis, N. S.; Schaak, R. E. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2013, 135, 9267-9270.

35

Zhu, D.; Zhang, L. H.; Ruther, R. E.; Hamers, R. J. Photo-illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction. Nat. Mater. 2013, 12, 836-841.

36

Watt, G. W.; Chrisp, J. D. A spectrophotometric method for the determination of hydrazine. Anal. Chem. 1952, 24, 2006-2008.

37

Segall, M. D.; Linda, P. J. D.; Probert, M. J.; Pickard, C. J.; Hasnip, P. J.; Clark, S. J.; Payne, M. C. First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys. Condens. Matter 2002, 14, 2717-2744.

38

Jain, A.; Hautier, G.; Ong, S. P.; Moore, C. J.; Fischer, C. C.; Persson, K. A.; Ceder, G. Formation enthalpies by mixing GGA and GGA + U calculations. Phys. Rev. B 2011, 84, 045115.

39

Wang, L.; Maxisch, T.; Ceder, G. Oxidation energies of transition metal oxides within the GGA + U framework. Phys. Rev. B 2006, 73, 195107.

40

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186.

41

Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992, 46, 6671-6687.

42

Gong, F.; Ding, Z. W.; Fang, Y.; Tong, C. J.; Xia, D. W.; Lv, Y. Y.; Wang, B.; Papavassiliou, D. V.; Liao, J. X.; Wu, M. Q. Enhanced electrochemical and thermal transport properties of graphene/MoS2 heterostructures for energy storage: Insights from multiscale modeling. ACS Appl. Mater. Interfaces 2018, 10, 14614-14621.

43

Zhang, G. G.; Kong, M. L.; Yao, Y. D.; Long, L.; Yan, M. L.; Liao, X. M.; Yin, G. F.; Huang, Z. B.; Asiri, A. M.; Sun, X. P. One-pot synthesis of γ-MnS/reduced graphene oxide with enhanced performance for aqueous asymmetric supercapacitors. Nanotechnology 2017, 28, 065402.

44

Tang, L. H.; Wang, Y.; Li, Y. M.; Feng, H. B.; Lu J.; Li, J. H. Preparation, structure, and electrochemical properties of reduced graphene sheet films. Adv. Funct. Mater. 2009, 19, 2782-2789.

45

Liu, X. J.; Pan, L. K.; Lv, T.; Zhu, G.; Sun, Z.; Sun, C. Q. Microwave-assisted synthesis of CdS-reduced graphene oxide composites for photocatalytic reduction of Cr (Ⅵ). Chem. Commun. 2011, 47, 11984-11986.

46

Yang, S. H.; Song, X. F.; Zhang, P.; Gao, L. Crumpled nitrogen-doped graphene-ultrafine Mn3O4 nanohybrids and their application in supercapacitors. J. Mater. Chem. A 2013, 1, 14162-14169.

47

Liu, C. L.; Chang, K. H.; Hu, C. C.; Wen, W. C. Microwave-assisted hydrothermal synthesis of Mn3O4/reduced graphene oxide composites for high power supercapacitors. J. Power Sources 2012, 217, 184-192.

48

Wang, H. L.; Hao, Q. L.; Yang, X. J.; Lu, L. D.; Wang, X. A nanostructured graphene/polyaniline hybrid material for supercapacitors. Nanoscale 2010, 2, 2164-2170.

49

Zhang, L. S.; Zhao, L. J.; Lian, J. S. Nanostructured Mn3O4-reduced graphene oxide hybrid and its applications for efficient catalytic decomposition of orange Ⅱ and high lithium storage capacity. RSC Adv. 2014, 4, 41838-41847.

50

Wang, C. B.; Yin, L. W.; Xiang, D.; Qi, Y. X. Uniform carbon layer coated Mn3O4 nanorod anodes with improved reversible capacity and cyclic stability for lithium ion batteries. ACS Appl. Mater. Interfaces 2012, 4, 1636-1642.

51

Bag, S.; Roy, K.; Gopinath, C. S.; Raj, C. R. Facile single-step synthesis of nitrogen-doped reduced graphene oxide-Mn3O4 hybrid functional material for the electrocatalytic reduction of oxygen. ACS Appl. Mater. Interfaces 2014, 6, 2692-2699.

52

Liu, T. T.; Ma, X.; Liu, D. N.; Hao, S.; Du, G.; Ma, Y. J.; Asiri, A. M.; Sun, X. P.; Chen, L. Mn doping of CoP nanosheets array: An efficient electrocatalyst for hydrogen evolution reaction with enhanced activity at all pH values. ACS Catal. 2017, 7, 98-102.

53

Wu, Y. Z.; Liu, S. Q.; Wang, H. Y.; Wang, X. W.; Zhang, X.; Jin, G. H. A novel solvothermal synthesis of Mn3O4/graphene composites for supercapacitors. Electrochim. Acta 2013, 90, 210-218.

54

Lee, J. W.; Hall, A. S.; Kim, J. D.; Mallouk, T. E. A facile and template-free hydrothermal synthesis of Mn3O4 nanorods on graphene sheets for supercapacitor electrodes with long cycle stability. Chem. Mater. 2012, 24, 1158-1164.

55

Tian, Y. Y.; Li, D. W.; Liu, J. L.; Wang, H.; Zhang, J. F.; Zheng, Y. Q.; Liu, T. H.; Hou, S. F. Facile synthesis of Mn3O4 nanoplates-anchored graphene microspheres and their applications for supercapacitors. Electrochim. Acta 2017, 257, 155-164.

56

Ren, X.; Zhao, J. X.; Wei, Q.; Ma, Y. J.; Guo, H. R.; Liu, Q.; Wang, Y.; Cui, G. W.; Asiri, A. M.; Li, B. H. et al. High-performance N2-to-NH3 conversion electrocatalyzed by Mo2C nanorod. ACS Cent. Sci. 2018, 5, 116-121.

57

Qiu, W. B.; Xie, X. Y.; Qiu, J. D.; Fang, W. H.; Liang, R. P.; Ren, X.; Ji, X. Q.; Cui, G. W.; Asiri, A. M.; Cui, G. L. et al. High-performance artificial nitrogen fixation at ambient conditions using a metal-free electrocatalyst. Nat. Commun. 2018, 9, 3485.

58

Wang, J.; Yu, L.; Hu, L.; Chen, G.; Xin, H. L.; Feng, X. F. Ambient ammonia synthesis via palladium-catalyzed electrohydrogenation of dinitrogen at low overpotential. Nat. Commun. 2018, 9, 1795.

59

Zhang, Y.; Du, H.; Ma, Y.; Ji, L.; Guo, H.; Tian, Z.; Chen, H.; Huang, H.; Cui, G.; Asiri, A. M. et al. Hexagonal boron nitride nanosheet for effective ambient N2 fixation to NH3. Nano Res. 2019, 12, 919-924.

60

Wang, Z.; Gong, F.; Zhang, L.; Wang, R.; Ji, L.; Liu, Q.; Luo, Y. L.; Guo, H. R.; Li, Y. H.; Gao, P. et al. Electrocatalytic hydrogenation of N2 to NH3 by MnO: Experimental and theoretical investigations. Adv. Sci. 2019, 6, 1801182.

61

Zhu, Y. Q.; Cao, T.; Li, Z.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Two-dimensional SnO2/graphene heterostructures for highly reversible electrochemical lithium storage. Sci. China Mater. 2018, 61, 1527-1535.

Nano Research
Pages 1093-1098
Cite this article:
Huang H, Gong F, Wang Y, et al. Mn3O4 nanoparticles@reduced graphene oxide composite: An efficient electrocatalyst for artificial N2 fixation to NH3 at ambient conditions. Nano Research, 2019, 12(5): 1093-1098. https://doi.org/10.1007/s12274-019-2352-5
Topics:

777

Views

95

Crossref

N/A

Web of Science

95

Scopus

10

CSCD

Altmetrics

Received: 03 January 2019
Revised: 01 February 2019
Accepted: 18 February 2019
Published: 12 March 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return