AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

In-situ fabricated anisotropic halide perovskite nanocrystals in polyvinylalcohol nanofibers: Shape tuning and polarized emission

Linghai Meng1Changgang Yang3Jingjia Meng1Yongzhi Wang2Yong Ge1Ziqiang Shao2( )Guofeng Zhang3Andrey L. Rogach4Haizheng Zhong1( )
Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems,School of Materials Science and Engineering, Beijing Institute of Technology,Beijing,100081,China;
Beijing Engineering Research Center of Cellulose and Its Derivatives,School of Materials Science and Engineering, Beijing Institute of Technology,Beijing,100081,China;
State Key Laboratory of Quantum Optics and Quantum Optics Devices,Institute of Laser Spectroscopy, Shanxi University,Taiyuan,030006,China;
Department of Materials Science and Engineering,and Centre for Functional Photonics (CFP), City University of Hong Kong,Hong Kong,999077,China;
Show Author Information

Graphical Abstract

Abstract

We report an in-situ fabrication of halide perovskite (CH3NH3PbX3, CH3NH3 = methylammonium, MA, X = Cl, Br, I) nanocrystals in polyvinylalcohol (PVA) nanofibers (MAPbX3@PVA nanofibers) through electrospinning a perovskite precursor solution. With the content of the precursors increased, the resulting MAPbBr3 nanocrystals in PVA matrix changed the shape from ellipsoidal to pearl-like, and finely into rods-like. Optimized MAPbBr3@PVA nanofibers show strong polarized emission with the photoluminescence quantum yield of up to 72%. We reveal correlations between the shape of in-situ fabricated perovskite nanocrystals and the polarization degree of their emission by comparing experimental data from the single nanofiber measurements with theoretical calculations. Polarized emission of MAPbBr3@PVA nanofibers can be attributed to the dielectric confinement and quantum confinement effects. Moreover, nanofibers can be efficiently aligned by using parallel positioned conductor strips with an air gap as collector. A polarization ratio of 0.42 was achieved for the films of well-aligned MAPbBr3@PVA nanofibers with a macroscale size of 0.5 cm × 2 cm, which allows potential applications in displays, lasers, waveguides, etc.

Electronic Supplementary Material

Download File(s)
12274_2019_2353_MOESM1_ESM.pdf (1.7 MB)

References

1

Kim, Y. H.; Cho, H.; Lee, T. W. Metal halide perovskite light emitters. Proc. Natl. Acad. Sci. USA 2016, 113, 11694-11702.

2

Lozano, G. The role of metal halide perovskites in next-generation lighting devices. J. Phys. Chem. Lett. 2018, 9, 3987-3997.

3

Han, D. B.; Imran, M.; Zhang, M. J.; Chang, S.; Wu, X. G.; Zhang, X.; Tang, J. L.; Wang, M. S.; Ali, S.; Li, X. G. et al. Efficient light-emitting diodes based on in situ fabricated FAPbBr3 nanocrystals: The enhancing role of the ligand-assisted reprecipitation process. ACS Nano 2018, 12, 8808-8816.

4

Song, J. Z.; Li, J. H.; Li, X. M.; Xu, L. M.; Dong, Y. H.; Zeng, H. B. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv. Mater. 2015, 27, 7162-7167.

5

Veldhuis, S. A.; Boix, P. P.; Yantara, N.; Li, M. J.; Sum, T. C.; Mathews, N.; Mhaisalkar, S. G. Perovskite materials for light-emitting diodes and lasers. Adv. Mater. 2016, 28, 6804-6834.

6

Wang, Y.; Sun, H. D. All-inorganic metal halide perovskite nanostructures: From photophysics to light-emitting applications. Small Methods 2018, 2, 1700252.

7

Yakunin, S.; Protesescu, L.; Krieg, F.; Bodnarchuk, M. I.; Nedelcu, G.; Humer, M.; De Luca, G.; Fiebig, M.; Heiss, W.; Kovalenko, M. V. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites. Nat. Commun. 2015, 6, 8056.

8

Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692-3696.

9

Zhang, F.; Zhong, H. Z.; Chen, C.; Wu, X. G.; Hu, X. M.; Huang, H. L.; Han, J. B.; Zou, B. S.; Dong Y. P. Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: Potential alternatives for display technology. ACS Nano 2015, 9, 4533-4542.

10

Zhou, Q. C.; Bai, Z. L.; Lu, W. G.; Wang, Y. T.; Zou, B. S.; Zhong, H. Z. In situ fabrication of halide perovskite nanocrystal-embedded polymer composite films with enhanced photoluminescence for display backlights. Adv. Mater. 2016, 28, 9163-9168.

11

Wang, Y. N.; He, J.; Chen, H.; Chen, J. S.; Zhu, R. D.; Ma, P.; Towers, A.; Lin, Y.; Gesquiere, A. J.; Wu, S. T. et al. Ultrastable, highly luminescent organic-inorganic perovskite-polymer composite films. Adv. Mater. 2016, 28, 10710-10717.

12

He, J.; Chen, H. W.; Chen, H.; Wang, Y. N.; Wu, S. T.; Dong, Y. J. Hybrid downconverters with green perovskite-polymer composite films for wide color gamut displays. Opt. Express 2017, 25, 12915-12925.

13

Zhang, M. J.; Wang, L. X.; Meng, L. H.; Wu, X. G.; Tan, Q. W.; Chen, Y. J.; Liang, W. Y.; Jiang, F.; Cai, Y.; Zhong, H. Z. Perovskite quantum dots embedded composite films enhancing UV response of silicon photodetectors for broadband and solar-blind light detection. Adv. Optical Mater. 2018, 6, 1800077.

14

Chang, S.; Bai, Z. L.; Zhong, H. Z. In situ fabricated perovskite nanocrystals: A revolution in optical materials. Adv. Optical Mater. 2018, 6, 1800380.

15

Wang, D.; Wu, D.; Dong, D.; Chen, W.; Hao, J. J.; Qin, J.; Xu, B.; Wang, K.; Sun, X. W. Polarized emission from CsPbX3 perovskite quantum dots. Nanoscale 2016, 8, 11565-11570.

16

Liu, L. G.; Huang, S.; Pan, L. F.; Shi, L. J.; Zou, B. S.; Deng, L. G.; Zhong, H. Z. Colloidal synthesis of CH3NH3PbBr3 nanoplatelets with polarized emission through self-organization. Angew. Chem. , Int. Ed. 2017, 56, 1780-1783.

17

He, J.; Towers, A.; Wang, Y. N.; Yuan, P. S.; Jiang, Z.; Chen, J. S.; Gesquiere, A. J.; Wu, S. T.; Dong, Y. J. In situ synthesis and macroscale alignment of CsPbBr3 perovskite nanorods in a polymer matrix. Nanoscale 2018, 10, 15436-15441.

18

Raja, S. N.; Bekenstein, Y.; Koc, M. A.; Fischer, S.; Zhang, D. D.; Lin, L. W.; Ritchie, R. O.; Yang, P. D.; Alivisatos, A. P. Encapsulation of perovskite nanocrystals into macroscale polymer matrices: Enhanced stability and polarization. ACS Appl. Mater. Interfaces 2016, 8, 35523-35533.

19

Wang, Z. Y.; Liu, J. Y.; Xu, Z. Q.; Xue, Y. Z.; Jiang, L. C.; Song, J. C.; Huang, F. Z.; Wang, Y. S.; Zhong, Y. L.; Zhang, Y. P. et al. Wavelength-tunable waveguides based on polycrystalline organic-inorganic perovskite microwires. Nanoscale 2016, 8, 6258-6264.

20

Eaton, S. W.; Lai, M. L.; Gibson, N. A.; Wong, A. B.; Dou, L. T.; Ma, J.; Wang, L. W.; Leone, S. R.; Yang, P. D. Lasing in robust cesium lead halide perovskite nanowires. Proc. Natl. Acad. Sci. USA 2016, 113, 1993-1998.

21

Xing, J.; Liu, X. F.; Zhang, Q.; Ha, S. T.; Yuan, Y. W.; Shen, C.; Sum, T. C.; Xiong, Q. H. Vapor phase synthesis of organometal halide perovskite nanowires for tunable room-temperature nanolasers. Nano Lett. 2015, 15, 4571-4577.

22

Gao, L.; Zeng, K.; Guo, J. S.; Ge, C.; Du, J.; Zhao, Y.; Chen, C.; Deng, H.; He, Y. S.; Song, H. S. et al. Passivated single-crystalline CH3NH3PbI3 nanowire photodetector with high detectivity and polarization sensitivity. Nano Lett. 2016, 16, 7446-7454.

23

Feng, J. G.; Yan, X. X.; Liu, Y.; Gao, H. F.; Wu, Y. C.; Su, B.; Jiang, L. Crystallographically aligned perovskite structures for high-performance polarization-sensitive photodetectors. Adv. Mater. 2017, 29, 1605993.

24

Sheng, X. X.; Chen, G. Y.; Wang, C.; Wang, W. Q.; Hui, J. F.; Zhang, Q.; Yu, K. H.; Wei, W.; Yi, M. D.; Zhang, M. et al. Polarized optoelectronics of CsPbX3 (X = Cl, Br, I) perovskite nanoplates with tunable size and thickness. Adv. Funct. Mater. 2018, 28, 1800283.

25

Oener, S. Z.; Khoram, P.; Brittman, S.; Mann, S. A.; Zhang, Q. P.; Fan, Z. Y.; Boettcher, S. W.; Garnett, E. C. Perovskite nanowire extrusion. Nano Lett. 2017, 17, 6557-6563.

26

Gu, L. L.; Tavakoli, M. M.; Zhang, D. Q.; Zhang, Q. P.; Waleed, A.; Xiao, Y. Q.; Tsui, K. H.; Lin, Y. J.; Liao, L.; Wang, J. N. et al. 3D Arrays of 1, 024-pixel image sensors based on lead halide perovskite nanowires. Adv. Mater. 2016, 28, 9713-9721.

27

Liu, P.; He, X. X.; Ren, J. H.; Liao, Q.; Yao, J. N.; Fu, H. B. Organic-inorganic hybrid perovskite nanowire laser arrays. ACS Nano 2017, 11, 5766-5773.

28

Deng, W.; Huang, L. M.; Xu, X. Z.; Zhang, X. J.; Jin, X. C.; Lee, S. T.; Jie, J. S. Ultrahigh-responsivity photodetectors from perovskite nanowire arrays for sequentially tunable spectral measurement. Nano Lett. 2017, 17, 2482-2489.

29

Lu, W. G.; Wu, X. G.; Huang, S.; Wang, L.; Zhou, Q. C.; Zou, B. S.; Zhong, H. Z.; Wang, Y. T. Strong polarized photoluminescence from stretched perovskite nanocrystal embedded polymer composite films. Adv. Optical Mater. 2017, 5, 1700594.

30

Güner, T.; Topçu, G.; Savacı, U.; Genç, A.; Turan, S.; Sari, E.; Demir, M. M. Polarized emission from CsPbBr3 nanowire embedded-electrospun PU fibers. Nanotechnology 2018, 29, 135202.

31

Bhardwaj, N.; Kundu, S. C. Electrospinning: A fascinating fiber fabrication technique. Biotechnol. Adv. 2010, 28, 325-347.

32

Wang, Y. W.; Zhu, Y. H.; Huang, J. F.; Cai, J.; Zhu, J. R.; Yang, X. L.; Shen, J. H.; Jiang, H.; Li, C. Z. CsPbBr3 perovskite quantum dots-based monolithic electrospun fiber membrane as an ultrastable and ultrasensitive fluorescent sensor in aqueous medium. J. Phys. Chem. Lett. 2016, 7, 4253-4258.

33

Yang, M. S.; Yu, J.; Jiang, S. Z.; Zhang, C.; Sun, Q. Q.; Wang, M. H.; Zhou, H.; Li, C. H.; Man, B. Y.; Lei, F. C. High stability luminophores: Fluorescent CsPbX3 (X = Cl, Br and I) nanofiber prepared by one-step electrospinning method. Opt. Express 2018, 26, 20649-20660.

34

Liao, H.; Guo, S. B.; Cao, S.; Wang, L.; Gao, F. M.; Yang, Z. B.; Zheng, J. J.; Yang, W. Y. A general strategy for in situ growth of all-inorganic CsPbX3 (X = Br, I, and Cl) perovskite nanocrystals in polymer fibers toward significantly enhanced water/thermal stabilities. Adv. Optical Mater. 2018, 6, 1800346.

35

Lin, C. C.; Jiang, D. H.; Kuo, C. C.; Cho, C. J.; Tsai, Y. H.; Satoh, T.; Su, C. Water-resistant efficient stretchable perovskite-embedded fiber membranes for light-emitting diodes. ACS Appl. Mater. Interfaces 2018, 10, 2210-2215.

36

Tsai, P. C.; Chen, J. Y.; Ercan, E.; Chueh, C. C.; Tung, S. H.; Chen, W. C. Uniform luminous perovskite nanofibers with color-tunability and improved stability prepared by one-step core/shell electrospinning. Small 2018, 14, 1704379.

37

Han, M. H.; Shin, J. K.; Oh, K. I.; Lee, Y. J.; Song, D. H.; Chung, Y. S.; Lee, Y. R.; Choi, H. G.; Oh, T. H.; Han, S. S. et al. Preparation of recycled poly(vinyl alcohol) (PVA)/iodine polarizing film. Polym. Polym. Compos. 2010, 18, 391-396.

38

Zhang, F.; Chen, C.; Kershaw, S. V.; Xiao, C. T.; Han, J. B.; Zou, B. S.; Wu, X.; Chang, S.; Dong, Y. P.; Rogach, A. L. et al. Ligand-controlled formation and photoluminescence properties of CH3NH3PbBr3 nanocubes and nanowires. ChemNanoMat. 2017, 3, 303-310.

39

Rodina, A. V.; Efros, A. L. Effect of dielectric confinement on optical properties of colloidal nanostructures. J. Exp. Theor. Phys. 2016, 122, 554-566.

40

Ruda, H. E.; Shik, A. Polarization-sensitive optical phenomena in semiconducting and metallic nanowires. Phys. Rev. B 2005, 72, 115308.

41

Schneider, J.; Zhang, W. L.; Srivastava, A. K.; Chigrinov, V. G.; Kwok, H. S.; Rogach, A. L. Photoinduced micropattern alignment of semiconductor nanorods with polarized emission in a liquid crystal polymer matrix. Nano Lett. 2017, 17, 3133-3138.

42

Shabaev, A.; Efros, A. L. 1D exciton spectroscopy of semiconductor nanorods. Nano Lett. 2004, 4, 1821-1825.

43

Chamarro, M.; Gourdon, C.; Lavallard, P. Photoluminescence polarization of semiconductor nanocrystals. J. Lumin. 1996, 70, 222-237.

44

Zhang, G. F.; Peng, Y. G.; Xie, H. Q.; Li, B.; Li, Z. J.; Yang, C. G.; Guo, W. L.; Qin, C. B.; Chen, R. Y.; Gao, Y. et al. Linear dipole behavior of single quantum dots encased in metal oxide semiconductor nanoparticles films. Front. Phys. 2018, 14, 23605.

45

Hu, J. T.; Li, L. S.; Yang, W. D.; Manna, L.; Wang, L. W.; Alivisatos, A. P. Linearly polarized emission from colloidal semiconductor quantum rods. Science 2001, 292, 2060-2063.

46

Peng, X. G.; Manna, L.; Yang, W. D.; Wickham, J.; Scher, E.; Kadavanich, A.; Alivisatos, A. P. Shape control of CdSe nanocrystals. Nature 2000, 404, 59-61.

47

Diroll, B. T.; Dadosh, T.; Koschitzky, A.; Goldman, Y. E.; Murray, C. B. Interpreting the energy-dependent anisotropy of colloidal nanorods using ensemble and single-particle spectroscopy. J. Phys. Chem. C 2013, 117, 23928-23937.

48

Tice, D. B.; Weinberg, D. J.; Mathew, N.; Chang, R. P. H.; Weiss, E. A. Measurement of wavelength-dependent polarization character in the absorption anisotropies of ensembles of CdSe nanorods. J. Phys. Chem. C 2013, 117, 13289-13296.

49

Giblin, J.; Protasenko, V.; Kuno, M. Wavelength sensitivity of single nanowire excitation polarization anisotropies explained through a generalized treatment of their linear absorption. ACS Nano 2009, 3, 1979-1987.

50

Sitt, A.; Salant, A.; Menagen, G.; Banin, U. Highly emissive nano rod-in-rod heterostructures with strong linear polarization. Nano Lett. 2011, 11, 2054-2060.

51

Tauber, D.; Dobrovolsky, A.; Camacho, R.; Scheblykin, I. G. Exploring the electronic band structure of organometal halide perovskite via photoluminescence anisotropy of individual nanocrystals. Nano Lett. 2016, 16, 5087-5094.

52

Wang, J. F.; Gudiksen, M. S.; Duan, X. F.; Cui, Y.; Lieber, C. M. Highly polarized photoluminescence and photodetection from single indium phosphide nanowires. Science 2001, 293, 1455-1457.

53

Cunningham, P. D.; Boercker, J. E.; Placencia, D.; Tischler, J. G. Anisotropic absorption in PbSe nanorods. ACS Nano 2014, 8, 581-590.

54

Diroll, B. T.; Koschitzky, A.; Murray, C. B. Tunable optical anisotropy of seeded CdSe/CdS nanorods. J. Phys. Chem. Lett. 2014, 5, 85-91.

55

Lavallard, P.; Suris, R. A. Polarized photoluminescence of an assembly of non cubic microcrystals in a dielectric matrix. Solid State Commun. 1995, 95, 267-269.

56

Tanaka, K.; Takahashi, T.; Ban, T.; Kondo, T.; Uchida, K.; Miura, N. Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3 CH3NH3PbI3. Solid State Commun. 2003, 127, 619-623.

57

Hasegawa, M.; Hirayama, Y. Use of quantum rods for display applications. SID Symp. Dig. Tech. Pap. 2016, 47, 241-244.

58

Qin, J.; Wen, Z. L.; Li, S.; Hao, J. J.; Chen, W.; Dong, D.; Deng, J.; Wang, D.; Xu, B.; Wu, D. et al. Large-scale luminance enhancement film with quantum rods aligned in polymeric nanofibers for high efficiency wide color gamut LED display. SID Symp. Dig. Tech. Pap. 2016, 47, 854-857.

Nano Research
Pages 1411-1416
Cite this article:
Meng L, Yang C, Meng J, et al. In-situ fabricated anisotropic halide perovskite nanocrystals in polyvinylalcohol nanofibers: Shape tuning and polarized emission. Nano Research, 2019, 12(6): 1411-1416. https://doi.org/10.1007/s12274-019-2353-4
Topics:
Part of a topical collection:

881

Views

58

Crossref

N/A

Web of Science

62

Scopus

6

CSCD

Altmetrics

Received: 13 January 2019
Revised: 18 February 2019
Accepted: 19 February 2019
Published: 29 May 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return