AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Hierarchical flower-like cobalt phosphosulfide derived from Prussian blue analogue as an efficient polysulfides adsorbent for long-life lithium–sulfur batteries

Xiaoxia Chen1Xuyang Ding1Haliya Muheiyati1Zhenyu Feng1Liqiang Xu1,2( )Weini Ge1Yitai Qian1
Key Laboratory of Colloid & Interface Chemistry,Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University,Jinan,250100,China;
Shenzhen Research Institute of Shandong University,Rm A301, Virtual University Park, Nanshan,Shenzhen,518057,China;
Show Author Information

Graphical Abstract

Abstract

Lithium–sulfur (Li–S) battery as one of the most attractive candidates for energy storage systems has attracted extensive interests. Herein, for the first time, hierarchical flower-like cobalt phosphosulfide architectures (defined as "CoSP") derived from Prussian blue analogue (PBA) was fabricated through the conversion of Co-based PBA in PxSy atmosphere. The as-prepared polar CoSP could effectively trap polysulfides through the formation of strong chemical bonds. In addition, after the combination of CoSP with high conductive rGO, the obtained CoSP/rGO as sulfur host material exhibits ultralow capacity decay rate of 0.046% per cycle over 900 cycles at a current density of 1 C. The excellent performance could be attributed to the shortened lithium diffusion pathways, fastened electron transport ability during polysulfide conversion, and increased much more anchor active sites to polysulfides, which is expected to be a promising material for Li-S batteries. It is believed that the as-prepared CoSP/rGO architectures will shed light on the development of novel promising materials for Li-S batteries with high cycle stability.

Electronic Supplementary Material

Download File(s)
12274_2019_2358_MOESM1_ESM.pdf (3.2 MB)

References

1

Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 2012, 11, 19-29.

2

Peng, H. J.; Huang, J. Q.; Cheng, X. B.; Zhang, Q. Review on high-loading and high-energy lithium-sulfur batteries. Adv. Energy Mater. 2017, 7, 1700260.

3

Manthiram, A.; Chung, S. H.; Zu, C. X. Lithium-sulfur batteries: Progress and prospects. Adv. Mater. 2015, 27, 1980-2006.

4

Li, Z.; Guan, B. Y.; Zhang, J. T.; Lou, X. W. A compact nanoconfined sulfur cathode for high-performance lithium-sulfur batteries. Joule 2017, 1, 576-587.

5

Seh, Z. W.; Sun, Y. M.; Zhang, Q. F.; Cui, Y. Designing high-energy lithium-sulfur batteries. Chem. Soc. Rev. 2016, 45, 5605-5634.

6

Chen, K. N.; Cao, J.; Lu, Q. Q.; Wang, Q. R.; Yao, M. J.; Han, M. M.; Niu, Z. Q.; Chen, J. Sulfur nanoparticles encapsulated in reduced graphene oxide nanotubes for flexible lithium-sulfur batteries. Nano Res. 2018, 11, 1345-1357.

7

Zhang, J.; Li, J. Y.; Wang, W. P.; Zhang, X. H.; Tan, X. H.; Chu, W. G.; Guo, Y. G. Microemulsion assisted assembly of 3D porous S/graphene@g-C3N4 hybrid sponge as free-standing cathodes for high energy density Li-S batteries. Adv. Energy Mater. 2018, 8, 1702839.

8

Kim, J. H.; Fu, K.; Choi, J.; Sun, S.; Kim, J.; Hu, L. B.; Paik, U. Hydroxylated carbon nanotube enhanced sulfur cathodes for improved electrochemical performance of lithium-sulfur batteries. Chem. Commun. 2015, 51, 13682- 13685.

9

Peng, H. J.; Zhang, G.; Chen, X.; Zhang, Z. W.; Xu, W. T.; Huang, J. Q.; Zhang, Q. Enhanced electrochemical kinetics on conductive polar mediators for lithium-sulfur batteries. Angew. Chem., Int. Ed. 2016, 55, 12990-12995.

10

Shang, C. Q.; Cao, L. J.; Yang, M. Y.; Wang, Z. Y.; Li, M. C.; Zhou, G. F.; Wang, X.; Lu, Z. G. Freestanding Mo2C-decorating N-doped carbon nanofibers as 3D current collector for ultra-stable Li-S batteries. Energy Storage Mater. 2018, doi: 10.1016/j.ensm.2018.08.013.

11

Pu, J.; Shen, Z. H.; Zheng, J. X.; Wu, W. L.; Zhu, C.; Zhou, Q. W.; Zhang, H. G.; Pan, F. Multifunctional Co3S4@sulfur nanotubes for enhanced lithium-sulfur battery performance. Nano Energy 2017, 37, 7-14.

12

Yuan, Z.; Peng, H. J.; Hou, T. Z.; Huang, J. Q.; Chen, C. M.; Wang, D. W.; Cheng, X. B.; Wei, F.; Zhang, Q. Powering lithium-sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts. Nano Lett. 2016, 16, 519-527.

13

Wu, W. L.; Pu, J.; Wang, J.; Shen, Z. H.; Tang, H. Y.; Deng, Z. T.; Tao, X. Y.; Pan, F.; Zhang, H. G. Biomimetic bipolar microcapsules derived from Staphylococcus aureus for enhanced properties of lithium-sulfur battery cathodes. Adv. Energy Mater. 2018, 8, 1702373.

14

Chung, S. H.; Luo, L.; Manthiram, A. TiS2-polysulfide hybrid cathode with high sulfur loading and low electrolyte consumption for lithium-sulfur batteries. ACS Energy Lett. 2018, 3, 568-573.

15

Zhou, T. H.; Lv, W.; Li, J.; Zhou, G. M.; Zhao, Y.; Fan, S. X.; Liu, B. L.; Li, B. H.; Kang, F. Y.; Yang, Q. H. Twinborn TiO2-TiN heterostructures enabling smooth trapping-diffusion-conversion of polysulfides towards ultralong life lithium-sulfur batteries. Energy Environ. Sci. 2017, 10, 1694-1703.

16

Zhu, L.; Li, C. C.; Ren, W. J.; Qin, M. Y.; Xu, L. Q. Multifunctional vanadium nitride@N-doped carbon composites for kinetically enhanced lithium-sulfur batteries. New J. Chem. 2018, 42, 5109-5116.

17

Deng, D. R.; Xue, F.; Jia, Y. J.; Ye, J. C.; Bai, C. D.; Zheng, M. S.; Dong, Q. F. Co4N nanosheet assembled mesoporous sphere as a matrix for ultrahigh sulfur content lithium-sulfur batteries. ACS Nano 2017, 11, 6031-6039.

18

Ren, W. J.; Xu, L. Q.; Zhu, L.; Wang, X. Y.; Ma, X. J.; Wang, D. B. Cobalt-doped vanadium nitride yolk-shell nanospheres @ carbon with physical and chemical synergistic effects for advanced Li-S batteries. ACS Appl. Mater. Interfaces 2018, 10, 11642-11651.

19

Li, C. C.; Liu, X. B.; Zhu, L.; Huang, R. Z.; Zhao, M. W.; Xu, L. Q.; Qian, Y. T. Conductive and polar titanium boride as a sulfur host for advanced lithium-sulfur batteries. Chem. Mater. 2018, 30, 6969-6977.

20

Yuan, H. D.; Chen, X. L.; Zhou, G. M.; Zhang, W. K.; Luo, J. M.; Huang, H.; Gan, Y. P.; Liang, C.; Xia, Y.; Zhang, J. et al. Efficient activation of Li2S by transition metal phosphides nanoparticles for highly stable lithium-sulfur batteries. ACS Energy Lett. 2017, 2, 1711-1719.

21

Pang, Q.; Kundu, D.; Nazar, L. F. A graphene-like metallic cathode host for long-life and high-loading lithium-sulfur batteries. Mater. Horiz. 2016, 3, 130-136.

22

Zhong, Y. R.; Yin, L. C.; He, P.; Liu, W.; Wu, Z. S.; Wang, H. L. Surface chemistry in cobalt phosphide-stabilized lithium-sulfur batteries. J. Am. Chem. Soc. 2018, 140, 1455-1459.

23

Chen, X. X.; Ding, X. Y.; Wang, C. S.; Feng, Z. Y.; Xu, L. Q.; Gao, X.; Zhai, Y. J.; Wang, D. B. A multi-shelled CoP nanosphere modified separator for highly efficient Li-S batteries. Nanoscale 2018, 10, 13694-13701.

24

Zhou, G. M.; Sun, J.; Jin, Y.; Chen, W.; Zu, C. X.; Zhang, R. F.; Qiu, Y. C.; Zhao, J.; Zhuo, D.; Liu, Y. Y. et al. Sulfiphilic nickel phosphosulfide enabled Li2S impregnation in 3D graphene cages for Li-S batteries. Adv. Mater. 2017, 29, 1603366.

25

Dai, Z. F.; Geng, H. B.; Wang, J.; Luo, Y. B.; Li, B.; Zong, Y.; Yang, J.; Guo, Y. Y.; Zheng, Y.; Wang, X. et al. Hexagonal-phase cobalt monophosphosulfide for highly efficient overall water splitting. ACS Nano 2017, 11, 11031-11040.

26

Liu, S. H.; Li, J.; Yan, X.; Su Q. F.; Lu Y. H.; Qiu J. S.; Wang Z. Y.; Lin X. D.; Huang J. L.; Liu R. L. et al. Superhierarchical cobalt-embedded nitrogen-doped porous carbon nanosheets as two-in-one hosts for high-performance lithium-sulfur batteries. Adv. Mater. 2018, 30, 1706895.

27

Li, Q.; Chen, Y. J.; Yang, T.; Lei, D. N.; Zhang, G. H.; Mei, L.; Chen, L. B.; Li, Q. H.; Wang, T. H. Preparation of 3D flower-like NiO hierarchical architectures and their electrochemical properties in lithium-ion batteries. Electrochim. Acta 2013, 90, 80-89.

28

Guo, Z. Q.; Nie, H. G.; Yang, Z.; Hua, W. X.; Ruan, C. P.; Chan, D.; Ge, M. Z.; Chen, X. A.; Huang, S. M. 3D CNTs/graphene-S-Al3Ni2 cathodes for high-sulfur-loading and long-life lithium-sulfur batteries. Adv. Sci. 2018, 5, 1800026.

29

Cabán-Acevedo, M.; Stone, M. L.; Schmidt, J. R.; Thomas, J. G.; Ding, Q.; Chang, H. C.; Tsai, M. L.; He, J. H.; Jin, S. Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide. Nat. Mater. 2015, 14, 1245-1251.

30

Mu, Y. L.; Wang, L.; Zhao, Y.; Liu, M. J.; Zhang, W.; Wu, J. T.; Lai, X.; Fan, G. Y.; Bi, J.; Gao, D. J. 3D flower-like MnCO3 microcrystals: Evolution mechanisms of morphology and enhanced electrochemical performances. Electrochim. Acta 2017, 251, 119-128.

31

Sivanantham, A.; Ganesan, P.; Estevez, L.; McGrail, B. P.; Motkuri, R. K.; Shanmugam, S. A stable graphitic, nanocarbon-encapsulated, cobalt-rich core-shell electrocatalyst as an oxygen electrode in a water electrolyzer. Adv. Energy Mater. 2018, 8, 1702838.

32

Huang, Z. P.; Chen, Z. Z.; Chen, Z. B.; Lv, C. C.; Humphrey, M. G.; Zhang, C. Cobalt phosphide nanorods as an efficient electrocatalyst for the hydrogen evolution reaction. Nano Energy, 2014, 9, 373.

33

Zeng, P.; Huang, L. W.; Zhang, X. L.; Han, Y. M.; Chen, Y. G. Inhibiting polysulfides diffusion of lithium-sulfur batteries using an acetylene black-CoS2 modified separator: Mechanism research and performance improvement. Appl. Surf. Sci. 2018, 427, 242-252.

34

Sun, J.; Sun, Y. M.; Pasta, M.; Zhou, G. M.; Li, Y. Z.; Liu, W.; Xiong, F.; Cui, Y. Entrapment of polysulfides by a black-phosphorus-modified separator for lithium-sulfur batteries. Adv. Mater. 2016, 28, 9797-9803.

35

Kong, L.; Chen, X.; Li, B. Q.; Peng, H. J.; Huang, J. Q.; Xie, J.; Zhang, Q. A bifunctional perovskite promoter for polysulfide regulation toward stable lithium-sulfur batteries. Adv. Mater. 2018, 30, 1705219.

36

Rehman, S.; Guo, S. J.; Hou, Y. L. Rational design of Si/SiO2@hierarchical porous carbon spheres as efficient polysulfide reservoirs for high-performance Li-S battery. Adv. Mater. 2016, 28, 3167-3172.

37

Zubair, U.; Amici, J.; Francia, C.; McNulty, D.; Bodoardo, S.; O'Dwyer, C. Polysulfide binding to several nanoscale magneli phases synthesized in carbon for long-life lithium-sulfur battery cathodes. ChemSusChem 2018, 11, 1838-1848.

38

Cai, W. L.; Li, G. R.; Zhang, K. L.; Xiao, G. N.; Wang, C.; Ye, K. F.; Chen, Z. W.; Zhu, Y. C.; Qian, Y. T. Conductive nanocrystalline niobium carbide as high-efficiency polysulfides tamer for lithium-sulfur batteries. Adv. Funct. Mater. 2018, 28, 1704865.

39

Li, C. C.; Shi, J. J.; Zhu, L.; Zhao, Y. Y.; Lu, J.; Xu, L. Q. Titanium nitride hollow nanospheres with strong lithium polysulfide chemisorption as sulfur hosts for advanced lithium-sulfur batteries. Nano Res. 2018, 11, 4302-4312.

40

Su, D. W.; Cortie, M.; Wang, G. X. Fabrication of N-doped graphene-carbon nanotube hybrids from Prussian blue for lithium-sulfur batteries. Adv. Energy Mater. 2017, 7, 1602014.

41

Wang, M. X.; Fan, L. S.; Qiu, Y.; Chen, D. D.; Wu, X.; Zhao, C. Y.; Cheng, J. H.; Wang, Y.; Zhang, N. Q.; Sun, K. N. Electrochemically active separators with excellent catalytic ability toward high-performance Li-S batteries. J. Mater. Chem. A 2018, 6, 11694-11699.

Nano Research
Pages 1115-1120
Cite this article:
Chen X, Ding X, Muheiyati H, et al. Hierarchical flower-like cobalt phosphosulfide derived from Prussian blue analogue as an efficient polysulfides adsorbent for long-life lithium–sulfur batteries. Nano Research, 2019, 12(5): 1115-1120. https://doi.org/10.1007/s12274-019-2358-z
Topics:

817

Views

25

Crossref

N/A

Web of Science

25

Scopus

4

CSCD

Altmetrics

Received: 17 December 2018
Revised: 17 February 2019
Accepted: 24 February 2019
Published: 26 March 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return