AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A bioinspired high-modulus mineral hydrogel binder for improving the cycling stability of microsized silicon particle-based lithium-ion battery

Meng Tian1Xiao Chen1Shengtong Sun2( )Dong Yang1( )Peiyi Wu1,2( )
State Key Laboratory of Molecular Engineering of Polymers,Department of Macromolecular Science, Laboratory for Advanced Materials, Fudan University,Shanghai,200433,China;
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials,College of Chemistry, Chemical Engineering and Biotechnology, Center for Advanced Low-dimension Materials, Donghua University,Shanghai,201620,China;
Show Author Information

Graphical Abstract

Abstract

Silicon with high specific capacity is deemed an ideal anode material for lithium ion batteries, which, however suffers from low cycling life due to its dramatic volume changes. Water-soluble polymer binders recently gain increasing attention by providing an eco-friendly and low-cost way in improving the cycling stability of Si-based anodes. Herein, a novel bioinspired supramolecular mineral hydrogel binder consisting of polyacrylic acid (PAA) physically crosslinked with amorphous calcium carbonate (ACC) nanoparticles is designed for high-performance anodes made from low-cost microsized Si particles. Owing to its organic-inorganic hydrophilic nature, ACC-PAA hybrid binder exhibits the reported highest modulus (~ 22 GPa) for polymer binders in electrolyte, even higher than lithiated Si species (Li15Si4, ~ 12 GPa). Together with its excellent adhesion and electrochemical stability, ACC-PAA binder can effectively suppress the pulverization of Si particles and maintain the mechanical integrity of electrodes during cycling. Therefore, even with a low binder content, the anode still shows an initial discharge capacity of 2, 973 mAh·g−1 and Coulombic efficiency of 81.5%, and retains 75% at a current density of 600 mA·g−1 after 100 cycles. The present organic-inorganic hybrid mineral binder may open a new approach for designing more effective polymer binders for Si-based lithium-ion batteries.

Electronic Supplementary Material

Download File(s)
12274_2019_2359_MOESM1_ESM.pdf (2.6 MB)

References

1

Tang, Y. X.; Zhang, Y. Y.; Li, W. L.; Ma, B.; Chen, X. D. Rational material design for ultrafast rechargeable lithium-ion batteries. Chem. Soc. Rev. 2015, 44, 5926–5940.

2

Goodenough, J. B.; Park, K. S. The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 2013, 135, 1167–1176.

3

Manthiram, A.; Fu, Y. Z.; Su, Y. S. Challenges and prospects of lithium– sulfur batteries. Acc. Chem. Res. 2013, 46, 1125–1134.

4

Jia, J. C.; Hu, X.; Wen, Z. H. Robust 3D network architectures of MnO nanoparticles bridged by ultrathin graphitic carbon for high-performance lithium-ion battery anodes. Nano Res. 2018, 11, 1135–1145.

5

Ji, L. W.; Lin, Z.; Alcoutlabi, M.; Zhang, X. W. Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ. Sci. 2011, 4, 2682–2699.

6

Luo, F.; Liu, B. N.; Zheng, J. Y.; Chu, G.; Zhong, K. F.; Li, H.; Huang, X. J.; Chen, L. Q. Review-nano-silicon/carbon composite anode materials towards practical application for next generation Li-ion batteries. J. Electrochem. Soc. 2015, 162, A2509–A2528.

7

Wang, W.; Kumta, P. N. Nanostructured hybrid silicon/carbon nanotube heterostructures: Reversible high-capacity lithium-ion anodes. ACS Nano 2010, 4, 2233–2241.

8

Su, H. P.; Barragan, A. A.; Geng, L. X.; Long, D. H.; Ling, L. C.; Bozhilov, K. N.; Mangolini, L.; Guo, J. C. Colloidal synthesis of silicon–carbon composite material for lithium-ion batteries. Angew. Chem. 2017, 129, 10920–10925.

9

Yin, H.; Cao, M. L.; Yu, X. X.; Zhao, H.; Shen, Y.; Li, C.; Zhu, M. Q. Self-standing Bi2O3 nanoparticles/carbon nanofiber hybrid films as a binder-free anode for flexible sodium-ion batteries. Mater. Chem. Front. 2017, 1, 1615–1621.

10

Yin, H.; Li, Q. W.; Cao, M. L.; Zhang, W.; Zhao, H.; Li, C.; Huo, K. F.; Zhu, M. Q. Nanosized-bismuth-embedded 1D carbon nanofibers as high-performance anodes for lithium-ion and sodium-ion batteries. Nano Res. 2017, 10, 2156–2167.

11

Chan, C. K.; Peng, H. L.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3, 31–35.

12

Zuo, X. X.; Zhu, J.; Müller-Buschbaum, P.; Cheng, Y. J. Silicon based lithium-ion battery anodes: A chronicle perspective review. Nano Energy 2017, 31, 113–143.

13

Lin, W. Z.; Lian, Y. P.; Zeng, G.; Chen, Y. Y.; Wen, Z. H.; Yang, H. H. A fast synthetic strategy for high-quality atomically thin antimonene with ultrahigh sonication power. Nano Res. 2018, 11, 5968–5977.

14

Terranova, M. L.; Orlanducci, S.; Tamburri, E.; Guglielmotti, V.; Rossi, M. Si/C hybrid nanostructures for Li-ion anodes: An overview. J. Power Sources 2014, 246, 167–177.

15

Guo, S. C.; Hu, X.; Hou, Y.; Wen, Z. H. Tunable synthesis of yolk–shell porous silicon@carbon for optimizing Si/C-based anode of lithium-ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 42084–42092.

16

Wang, C.; Wu, H.; Chen, Z.; McDowell, M. T.; Cui, Y.; Bao, Z. N. Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nat. Chem. 2013, 5, 1042–1048.

17

Choi, S.; Kwon, T. W.; Coskun, A.; Choi, J. W. Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries. Science 2017, 357, 279–283.

18

Kovalenko, I.; Zdyrko, B.; Magasinski, A.; Hertzberg, B.; Milicev, Z.; Burtovyy, R.; Luzinov, I.; Yushin, G. A major constituent of brown algae for use in high-capacity Li-ion batteries. Science 2011, 334, 75–79.

19

Koo, B.; Kim, H.; Cho, Y.; Lee, K. T.; Choi, N. S.; Cho, J. A highly cross-linked polymeric binder for high-performance silicon negative electrodes in lithium ion batteries. Angew. Chem. , Int. Ed. 2012, 51, 8762–8767.

20

Bie, Y. T.; Yang, J.; Nuli, Y.; Wang, J. L. Natural karaya gum as an excellent binder for silicon-based anodes in high-performance lithium-ion batteries. J. Mater. Chem. A 2017, 5, 1919–1924.

21

Bie, Y. T.; Yang, J.; Liu, X. L.; Wang, J. L.; Nuli, Y.; Lu, W. Polydopamine wrapping silicon cross-linked with polyacrylic acid as high-performance anode for lithium-ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 2899–2904.

22

Ryou, M. H.; Kim, J.; Lee, I.; Kim, S.; Jeong, Y. K.; Hong, S.; Ryu, J. H.; Kim, T. S.; Park, J. K.; Lee, H. et al. Mussel-inspired adhesive binders for high-performance silicon nanoparticle anodes in lithium-ion batteries. Adv. Mater. 2013, 25, 1571–1576.

23

Shin, D.; Park, H.; Paik, U. Cross-linked poly(acrylic acid)-carboxymethyl cellulose and styrene-butadiene rubber as an efficient binder system and its physicochemical effects on a high energy density graphite anode for Li-ion batteries. Electrochem. Commun. 2017, 77, 103–106.

24

Lee, S. H.; Lee, J. H.; Nam, D. H.; Cho, M.; Kim, J.; Chanthad, C.; Lee, Y. Epoxidized natural rubber/chitosan network binder for silicon anode in lithium-ion battery. ACS Appl. Mater. Interfaces 2018, 10, 16449–16457.

25

Xu, Z. X.; Yang, J.; Zhang, T.; Nuli, Y.; Wang, J. L.; Hirano, S. I. Silicon microparticle anodes with self-healing multiple network binder. Joule 2018, 2, 950–961.

26

Wang, L.; Liu, T. F.; Peng, X.; Zeng, W. W.; Jin, Z. Z.; Tian, W. F.; Gao, B.; Zhou, Y. H.; Chu, P. K.; Huo, K. F. Highly stretchable conductive glue for high-performance silicon anodes in advanced lithium-ion batteries. Adv. Funct. Mater. 2018, 28, 1704858.

27

Wu, H.; Yu, G. H.; Pan, L. J.; Liu, N.; McDowell, M. T.; Bao, Z. N.; Cui, Y. Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nat. Commun. 2013, 4, 1943.

28

Zeng, W. W.; Wang, L.; Peng, X.; Liu, T. F.; Jiang, Y. Y.; Qin, F.; Hu, L.; Chu, P. K.; Huo, K. F.; Zhou, Y. H. Enhanced ion conductivity in conducting polymer binder for high-performance silicon anodes in advanced lithium-ion batteries. Adv. Energy Mater. 2018, 8, 1702314.

29

Chen, H.; Ling, M.; Hencz, L.; Ling, H. Y.; Li, G. R.; Lin, Z.; Liu, G.; Zhang, S. Q. Exploring chemical, mechanical, and electrical functionalities of binders for advanced energy-storage devices. Chem. Rev. 2018, 118, 8936–8982.

30

Yin, H.; Liu, Y.; Yu, N.; Qu, H. Q.; Liu, Z. T.; Jiang, R. Z.; Li, C.; Zhu, M. Q. Graphene-like MoS2 nanosheets on carbon fabrics as high-performance binder-free electrodes for supercapacitors and Li-ion batteries. ACS Omega 2018, 3, 17466–17473.

31

Hertzberg, B.; Alexeev, A.; Yushin, G. Deformations in Si−Li anodes upon electrochemical alloying in nano-confined space. J. Am. Chem. Soc. 2010, 132, 8548–8549.

32

Wang, Y. K.; Zhang, Q. L.; Li, D. W.; Hu, J. Z.; Xu, J. G.; Dang, D. Y.; Xiao, X. C.; Cheng, Y. T. Mechanical property evolution of silicon composite electrodes studied by environmental nanoindentation. Adv. Energy Mater. 2018, 8, 1702578.

33

Hertzberg, B.; Benson, J.; Yushin, G. Ex-situ depth-sensing indentation measurements of electrochemically produced Si–Li alloy films. Electrochem. Commun. 2011, 13, 818–821.

34

Kim, H.; Chou, C. Y.; Ekerdt, J. G.; Hwang, G. S. Structure and properties of Li−Si alloys: A first-principles study. J. Phys. Chem. C 2011, 115, 2514– 2521.

35

Yin, H.; Yu, X. X.; Yu, Y. W.; Cao, M. L.; Zhao, H.; Li, C.; Zhu, M. Q. Tellurium nanotubes grown on carbon fiber cloth as cathode for flexible all-solid-state lithium-tellurium batteries. Electrochim. Acta 2018, 282, 870–876.

36

Chon, M. J.; Sethuraman, V. A.; McCormick, A.; Srinivasan, V.; Guduru, P. R. Real-time measurement of stress and damage evolution during initial lithiation of crystalline silicon. Phys. Rev. Lett. 2011, 107, 045503.

37

Yin, H.; Yu, X. X.; Li, Q. W.; Cao, M. L.; Zhang, W.; Zhao, H.; Zhu, M. Q. Hollow porous CuO/C composite microcubes derived from metal-organic framework templates for highly reversible lithium-ion batteries. J. Alloys Compd. 2017, 706, 97–102.

38

Zhang, L.; Zhang, L. Y.; Chai, L. L.; Xue, P.; Hao, W. W.; Zheng, H. H. A coordinatively cross-linked polymeric network as a functional binder for high-performance silicon submicro-particle anodes in lithium-ion batteries. J. Mater. Chem. A 2014, 2, 19036–19045.

39

Song, J. X.; Zhou, M. J.; Yi, R.; Xu, T.; Gordin, M. L.; Tang, D. H.; Yu, Z. X.; Regula, M.; Wang, D. H. Interpenetrated gel polymer binder for high-performance silicon anodes in lithium-ion batteries. Adv. Funct. Mater. 2014, 24, 5904–5910.

40

Park, Y.; Lee, S.; Kim, S. H.; Jang, B. Y.; Kim, J. S.; Oh, S. M.; Kim, J. Y.; Choi, N. S.; Lee, K. T.; Kim, B. S. A photo-cross-linkable polymeric binder for silicon anodes in lithium ion batteries. RSC Adv. 2013, 3, 12625–12630.

41

Liu, J.; Zhang, Q.; Zhang, T.; Li, J. T.; Huang, L.; Sun, S. G. A robust ion-conductive biopolymer as a binder for Si anodes of lithium-ion batteries. Adv. Funct. Mater. 2015, 25, 3599–3605.

42

Luo, C.; Du, L. L.; Wu, W.; Xu, H. L.; Zhang, G. Z.; Li, S.; Wang, C. Y.; Lu, Z. G.; Deng, Y. H. Novel lignin-derived water-soluble binder for micro silicon anode in lithium-ion batteries. ACS Sustain. Chem. Eng. 2018, 6, 12621–12629.

43

Gower, L. B.; Odom, D. J. Deposition of calcium carbonate films by a polymer-induced liquid-precursor (PILP) process. J. Cryst. Growth 2000, 210, 719–734.

44

Cölfen, H. A crystal-clear view. Nat. Mater. 2010, 9, 960–961.

45

Finnemore, A.; Cunha, P.; Shean, T.; Vignolini, S.; Guldin, S.; Oyen, M.; Steiner, U. Biomimetic layer-by-layer assembly of artificial nacre. Nat. Commun. 2012, 3, 966.

46

Mikkelsen, A.; Engelsen, S. B.; Hansen, H. C. B.; Larsen, O.; Skibsted, L. H. Calcium carbonate crystallization in the α-chitin matrix of the shell of pink shrimp, Pandalus borealis, during frozen storage. J. Cryst. Growth 1997, 177, 125–134.

47

Saito, T.; Oaki, Y.; Nishimura, T.; Isogai, A.; Kato, T. Bioinspired stiff and flexible composites of nanocellulose-reinforced amorphous CaCO3. Mater. Horiz. 2014, 1, 321–325.

48

Sun, S. T.; Mao, L. B.; Lei, Z. Y.; Yu, S. H.; Cölfen, H. Hydrogels from amorphous calcium carbonate and polyacrylic acid: Bio-inspired materials for "mineral plastics". Angew. Chem. , Int. Ed. 2016, 55, 11765–11769.

49

Lei, Z. Y.; Wang, Q. K.; Sun, S. T.; Zhu, W. C.; Wu, P. Y. A bioinspired mineral hydrogel as a self-healable, mechanically adaptable ionic skin for highly sensitive pressure sensing. Adv. Mater. 2017, 29, 1700321.

50

Lin, S. Y.; Zhong, Y. J.; Zhao, X. L.; Sawada, T.; Li, X. M.; Lei, W. H.; Wang, M. R.; Serizawa, T.; Zhu, H. W. Synthetic multifunctional graphene composites with reshaping and self-healing features via a facile biomineralization-inspired process. Adv. Mater. 2018, 30, 1803004.

51

Li, A.; Jia, Y. F.; Sun, S. T.; Xu, Y. S.; Minsky, B. B.; Stuart, M. A. C.; Cölfen, H.; von Klitzing, R.; Guo, X. H. Mineral-enhanced polyacrylic acid hydrogel as an oyster-inspired organic-inorganic hybrid adhesive. ACS Appl. Mater. Interfaces 2018, 10, 10471–10479.

52

Bromberg, L.; Temchenko, M.; Alakhov, V.; Hatton, T. A. Bioadhesive properties and rheology of polyether-modified poly(acrylic acid) hydrogels. Int. J. Pharm. 2004, 282, 45–60.

53

Li, D. W.; Wang, Y. K.; Hu, J. Z.; Lu, B.; Dang, D. Y.; Zhang, J. Q.; Cheng, Y. T. Role of polymeric binders on mechanical behavior and cracking resistance of silicon composite electrodes during electrochemical cycling. J. Power Sources 2018, 387, 9–15.

54

Chen, Z.; Wang, C.; Lopez, J.; Lu, Z. D.; Cui, Y.; Bao, Z. N. High-areal-capacity silicon electrodes with low-cost silicon particles based on spatial control of self-healing binder. Adv. Energy Mater. 2015, 5, 1401826.

55

McDowell, M. T.; Ryu, I.; Lee, S. W.; Wang, C. M.; Nix, W. D.; Cui, Y. Studying the kinetics of crystalline silicon nanoparticle lithiation with in situ transmission electron microscopy. Adv. Mater. 2012, 24, 6034–6041.

56

Guo, S. T.; Li, H.; Li, Y. Q.; Han, Y.; Chen, K. B.; Xu, G. Z.; Zhu, Y. J.; Hu, X. L. SiO2-enhanced structural stability and strong adhesion with a new binder of konjac glucomannan enables stable cycling of silicon anodes for lithium-ion batteries. Adv. Energy Mater. 2018, 8, 1800434.

57

Yao, Y.; McDowell, M. T.; Ryu, I.; Wu, H.; Liu, N.; Hu, L. B.; Nix, W. D.; Cui, Y. Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Lett. 2011, 11, 2949–2954.

Nano Research
Pages 1121-1127
Cite this article:
Tian M, Chen X, Sun S, et al. A bioinspired high-modulus mineral hydrogel binder for improving the cycling stability of microsized silicon particle-based lithium-ion battery. Nano Research, 2019, 12(5): 1121-1127. https://doi.org/10.1007/s12274-019-2359-y
Topics:

847

Views

51

Crossref

N/A

Web of Science

55

Scopus

16

CSCD

Altmetrics

Received: 18 December 2018
Revised: 29 January 2019
Accepted: 24 February 2019
Published: 23 March 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return