AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Strategies for improving the storage performance of silicon-based anodes in lithium-ion batteries

Wei Tao1Ping Wang1Ya You2Kyusung Park2Cao-Yu Wang1Yong-Ke Li1Fei-Fei Cao1( )Sen Xin2( )
College of Science,Huazhong Agricultural University,Wuhan,430070,China;
Department of Mechanical Engineering,The University of Texas at Austin,Austin, TX,78712,USA;
Show Author Information

Graphical Abstract

Abstract

Silicon has attracted much attention as a promising anode material for lithium-ion batteries (LIBs) due to its high theoretical capacity and rich resource abundance. However, the practical battery use of Si is challenged by its low conductivity and drastic volume variation during the Li uptake/release process. Tremendous efforts have been made on shrinking the particle size of Si into nanoscale so that the volume variation could be accommodated. However, the bare nano-Si material would still pulverize upon (de)lithiation. Moreover, it shows an excessive surface area to invite unlimited growth of solid electrolyte interface that hinders the transportation of charge carriers, and an increased interparticle resistance. As a result, the Si nanoparticles gradually lose their electrical contact during the cycling process, which accounts for poor thermodynamic stability and sluggish kinetics of the anode reaction versus Li. To address these problems and improve the Li storage performance of nano-Si anode, proper structural design should be applied on the Si anode. In this perspective, we will briefly review some strategies for improving the electrochemistry versus Li of nano-Si materials and their derivatives, and show opinions on the optimal design of nanostructured Si anode for advanced LIBs.

References

1

Zuo, X. X.; Zhu, J.; Müller-Buschbaum, P.; Cheng, Y. J. Silicon based lithium-ion battery anodes: A chronicle perspective review. Nano Energy 2017, 31, 113–143.

2

Li, J. Y.; Xu, Q.; Li, G.; Yin, Y. X.; Wan, L. J.; Guo, Y. G. Research progress regarding Si-based anode materials towards practical application in high energy density Li-ion batteries. Mater. Chem. Front. 2017, 1, 1691–1708.

3

Luo, W.; Chen, X. Q.; Xia, Y.; Chen, M.; Wang, L. J.; Wang, Q. Q.; Li, W.; Yang, J. P. Surface and interface engineering of silicon-based anode materials for lithium-ion batteries. Adv. Energy Mater. 2017, 7, 1701083.

4

Ashuri, M.; He, Q. R.; Shaw, L. L. Silicon as a potential anode material for Li-ion batteries: Where size, geometry and structure matter. Nanoscale 2016, 8, 74–103.

5

Yi, R.; Gordin, M. L.; Wang, D. H. Integrating Si nanoscale building blocks into micro-sized materials to enable practical applications in lithium-ion batteries. Nanoscale 2016, 8, 1834–1848.

6

Feng, K.; Ahn, W.; Lui, G.; Park, H. W.; Kashkooli, A. G.; Jiang, G. P.; Wang, X. L.; Xiao, X. C.; Chen, Z. W. Implementing an in-situ carbon network in Si/reduced graphene oxide for high performance lithium-ion battery anodes. Nano Energy 2016, 19, 187–197.

7

Rahman, M. A.; Song, G. S.; Bhatt, A. I.; Wong, Y. C.; Wen, C. E. Nanostructured silicon anodes for high-performance lithium-ion batteries. Adv. Funct. Mater. 2016, 26, 647–678.

8

Liu, J.; Zhang, Q.; Zhang, T.; Li, J. T.; Huang, L.; Sun, S. G. A robust ion-conductive biopolymer as a binder for Si anodes of lithium-ion batteries. Adv. Funct. Mater. 2015, 25, 3599–3605.

9

Luo, Z. P.; Xiao, Q. Z.; Lei, G. T.; Li, Z. H.; Tang, C. J. Si nanoparticles/graphene composite membrane for high performance silicon anode in lithium ion batteries. Carbon 2016, 98, 373–380.

10

Shi, J. L.; Xiao, D. D.; Zhang, X. D.; Yin, Y. X.; Guo, Y. G.; Gu, L.; Wan, L. J. Improving the structural stability of Li-rich cathode materials via reservation of cations in the Li-slab for Li-ion batteries. Nano Res. 2017, 10, 4201–4209.

11

Hassan, F. M.; Chabot, V.; Elsayed, A. R.; Xiao, X. C.; Chen, Z. W. Engineered Si electrode nanoarchitecture: A scalable postfabrication treatment for the production of next-generation Li-ion batteries. Nano Lett. 2014, 14, 277–283.

12

Han, C. P.; He, Y. B.; Liu, M.; Li, B. H.; Yang, Q. H.; Wong, C. P.; Kang, F. Y. A review of gassing behavior in Li4Ti5O12-based lithium ion batteries. J. Mater. Chem. A 2017, 5, 6368–6381.

13

Mei, Y. N.; Huang, Y. H.; Hu, X. Y. Nanostructured Ti-based anode materials for Na-ion batteries. J. Mater. Chem. A 2016, 4, 12001–12013.

14

Yang, Z. M.; Wu, H. H.; Zheng, Z. M.; Cheng, Y.; Li, P.; Zhang, Q. B.; Wang, M. S. Tin nanoparticles encapsulated carbon nanoboxes as high-performance anode for lithium-ion batteries. Front. Chem. 2018, 6, 533.

15

Wang, B. R.; Jin, J.; Rui, K.; Zhu, C. X.; Wen, Z. Y. Scalable synthesis of hierarchical porous Ge/rGO microspheres with an ultra-long cycling life for lithium storage. J. Power Sources 2018, 396, 124–133.

16

Liu, D. Q.; Liu, Z. J.; Li, X. W.; Xie, W. H.; Wang, Q.; Liu, Q. M.; Fu, Y. J.; He, D. Y. Group IVA element (Si, Ge, Sn)-based alloying/dealloying anodes as negative electrodes for full-cell lithium-ion batteries. Small 2017, 13, 1702000.

17

Zhu, Y. Q.; Cao, T.; Li, Z.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Two-dimensional SnO2/graphene heterostructures for highly reversible electrochemical lithium storage. Sci. China Mater. 2018, 61, 1527–1535.

18

Chen, Y.; Liu, L. F.; Xiong, J.; Yang, T. Z.; Qin, Y.; Yan, C. L. Porous Si nanowires from cheap metallurgical silicon stabilized by a surface oxide layer for lithium ion batteries. Adv. Funct. Mater. 2015, 25, 6701–6709.

19

Casimir, A.; Zhang, H. G.; Ogoke, O.; Amine, J. C.; Lu, J.; Wu, G. Silicon-based anodes for lithium-ion batteries: Effectiveness of materials synthesis and electrode preparation. Nano Energy 2016, 27, 359–376.

20

Li, W. Y.; Tang, Y. B.; Kang, W. P.; Zhang, Z. Y.; Yang, X.; Zhu, Y.; Zhang, W. J.; Lee, C. S. Core-shell Si/C nanospheres embedded in bubble sheet-like carbon film with enhanced performance as lithium ion battery anodes. Small 2015, 11, 1345–1351.

21

Chan, C. K.; Peng, H. L.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3, 31–35.

22

Cui, L. F.; Hu, L. B.; Choi, J. W.; Cui, Y. Light-weight free-standing carbon nanotube-silicon films for anodes of lithium ion batteries. ACS Nano 2010, 4, 3671–3678.

23

Yu, C. J.; Li, X.; Ma, T.; Rong, J. P.; Zhang, R. J.; Shaffer, J.; An, Y. H.; Liu, Q.; Wei, B. Q.; Jiang, H. Q. Silicon thin films as anodes for high-performance lithium-ion batteries with effective stress relaxation. Adv. Energy Mater. 2012, 2, 68–73.

24

Jia, H. P.; Gao, P. F.; Yang, J.; Wang, J. L.; Nuli, Y. N.; Yang, Z. Novel three-dimensional mesoporous silicon for high power lithium-ion battery anode material. Adv. Energy Mater. 2011, 1, 1036–1039.

25

Li, X. L.; Gu, M.; Hu, S. Y.; Kennard, R.; Yan, P. F.; Chen, X. L.; Wang, C. M.; Sailor, M. J.; Zhang, J. G.; Liu, J. Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes. Nat. Commun. 2014, 5, 4105.

26

Liu, B. R.; Soares, P.; Checkles, C.; Zhao, Y.; Yu, G. H. Three-dimensional hierarchical ternary nanostructures for high-performance Li-ion battery anodes. Nano Lett. 2013, 13, 3414–3419.

27

Obrovac, M. N.; Christensen, L. Structural changes in silicon anodes during lithium insertion/extraction. Electrochem. Solid-State Lett. 2004, 7, A93–A96.

28

Feng, K.; Li, M.; Liu, W. W.; Kashkooli, A. G.; Xiao, X. C.; Cai, M.; Chen, Z. W. Silicon-based anodes for lithium-ion batteries: From fundamentals to practical applications. Small 2018, 14, 1702737.

29

Zhu, C. Y.; Han, K.; Geng, D. S.; Ye, H. Q.; Meng, X. B. Achieving high-performance silicon anodes of lithium-ion batteries via atomic and molecular layer deposited surface coatings: An overview. Electrochim. Acta 2017, 251, 710–728.

30

Ryu, J.; Bok, T.; Kim, S.; Park, S. Fundamental understanding of nanostructured Si electrodes: Preparation and characterization. ChemNanoMat 2018, 4, 319–337.

31

Zhang, F. F.; Wan, L.; Chen, J. T.; Li, X. C.; Yan, X. B. Crossed carbon skeleton enhances the electrochemical performance of porous silicon nanowires for lithium ion battery anode. Electrochim. Acta 2018, 280, 86–93.

32

Lee, K. T.; Cho, J. Roles of nanosize in lithium reactive nanomaterials for lithium ion batteries. Nano Today 2011, 6, 28–41.

33

He, Y. Y.; Xu, L. Q.; Li, C. C.; Chen, X. X.; Xu, G.; Jiao, X. Y. Mesoporous Mn-Sn bimetallic oxide nanocubes as long cycle life anodes for Li-ion half/full cells and sulfur hosts for Li-S batteries. Nano Res. 2018, 11, 3555–3566.

34

Kim, H.; Seo, M.; Park, M. H.; Cho, J. A critical size of silicon nano-anodes for lithium rechargeable batteries. Angew. Chem., Int. Ed. 2010, 49, 2146–2149.

35

Cao, F. F.; Deng, J. W.; Xin, S.; Ji, H. X.; Schmidt, O. G.; Wan, L. J.; Guo, Y. G. Cu-Si nanocable arrays as high-rate anode materials for lithium-ion batteries. Adv. Mater. 2011, 23, 4415–4420.

36

Song, H. C.; Wang, H. X.; Lin, Z. X.; Jiang, X. F.; Yu, L. W.; Xu, J.; Yu, Z. W.; Zhang, X. W.; Liu, Y. J.; He, P. et al. Highly connected silicon-copper alloy mixture nanotubes as high-rate and durable anode materials for lithium-ion batteries. Adv. Funct. Mater. 2016, 26, 524–531.

37

Sun, L. M.; Wang, X. H.; Susantyoko, R. A.; Zhang, Q. Copper-silicon core-shell nanotube arrays for free-standing lithium ion battery anodes. J. Mater. Chem. A 2014, 2, 15294–15297.

38

Lin, L.; Ma, Y. T.; Xie, Q. S.; Wang, L. S.; Zhang, Q. F.; Peng, D. L. Copper-nanoparticle-induced porous Si/Cu composite films as an anode for lithium ion batteries. ACS Nano 2017, 11, 6893–6903.

39

Wu, H.; Yu, G. H.; Pan, L. J.; Liu, N.; McDowell, M. T.; Bao, Z. N.; Cui, Y. Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nat. Commun. 2013, 4, 1943.

40

Higgins, T. M.; Park, S. H.; King, P. J.; Zhang, C. F.; McEvoy, N.; Berner, N. C.; Daly, D.; Shmeliov, A.; Khan, U.; Duesberg, G. et al. A commercial conducting polymer as both binder and conductive additive for silicon nanoparticle-based lithium-ion battery negative electrodes. ACS Nano 2016, 10, 3702–3713.

41

Choi, S.; Kwon, T. W.; Coskun, A.; Choi, J. W. Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries. Science 2017, 357, 279–283.

42

Guan, H.; Wang, X.; Chen, S. M.; Bando, Y.; Golberg, D. Coaxial Cu-Si@C array electrodes for high-performance lithium ion batteries. Chem. Commun. 2011, 47, 12098–12100.

43

He, Y.; Xiang, K. X.; Zhou, W.; Zhu, Y. R.; Chen, X. H.; Chen, H. Folded-hand silicon/carbon three-dimensional networks as a binder-free advanced anode for high-performance lithium-ion batteries. Chem. Eng. J. 2018, 353, 666–678.

44

Song, H. C.; Wang, S.; Song, X. Y.; Yang, H. F.; Du, G. H.; Yu, L. W.; Xu, J.; He, P.; Zhou, H. S.; Chen, K. J. A bottom-up synthetic hierarchical buffer structure of copper silicon nanowire hybrids as ultra-stable and high-rate lithium-ion battery anodes. J. Mater. Chem. A 2018, 6, 7877–7886.

45

Polat, D. B.; Keles, O.; Amine, K. Compositionally-graded silicon-copper helical arrays as anodes for lithium-ion batteries. J. Power Sources 2016, 304, 273–281.

46

Liu, J. Y.; Li, N.; Goodman, M. D.; Zhang, H. G.; Epstein, E. S.; Huang, B.; Pan, Z.; Kim, J.; Choi, J. H.; Huang, X. J. et al. Mechanically and chemically robust sandwich-structured C@Si@C nanotube array Li-ion battery anodes. ACS Nano 2015, 9, 1985–1994.

47

Liu, Z. J.; Guo, P. Q.; Liu, B. L.; Xie, W. H.; Liu, D. Q.; He, D. Y. Carbon-coated Si nanoparticles/reduced graphene oxide multilayer anchored to nanostructured current collector as lithium-ion battery anode. Appl. Surf. Sci. 2017, 396, 41–47.

48

Gao, C. H.; Zhao, H. L.; Lv, P. P.; Zhang, T. H.; Xia, Q.; Wang, J. Engineered Si sandwich electrode: Si nanoparticles/graphite sheet hybrid on Ni foam for next-generation high-performance lithium-ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 1693–1698.

49

Nguyen, H. T.; Yao, F.; Zamfir, M. R.; Biswas, C.; So, K. P.; Lee, Y. H.; Kim, S. M.; Cha, S. N.; Kim, J. M.; Pribat, D. Highly interconnected Si nanowires for improved stability Li-ion battery anodes. Adv. Energy Mater. 2011, 1, 1154–1161.

50

Kim, W. S.; Choi, J.; Hong, S. H. Meso-porous silicon-coated carbon nanotube as an anode for lithium-ion battery. Nano Res. 2016, 9, 2174–2181.

51

Yue, X. Y.; Sun, W.; Zhang, J.; Wang, F.; Sun, K. N. Facile synthesis of 3D silicon/carbon nanotube capsule composites as anodes for high-performance lithium-ion batteries. J. Power Sources 2016, 329, 422–427.

52

Shen, T.; Xia, X. H.; Xie, D.; Yao, Z. J.; Zhong, Y.; Zhan, J. Y.; Wang, D. H.; Wu, J. B.; Wang, X. L.; Tu, J. P. Encapsulating silicon nanoparticles into mesoporous carbon forming pomegranate-structured microspheres as a high-performance anode for lithium ion batteries. J. Mater. Chem. A 2017, 5, 11197–11203.

53

Fang, G.; Deng, X. L.; Zou, J. Z.; Zeng, X. R. Amorphous/ordered dual carbon coated silicon nanoparticles as anode to enhance cycle performance in lithium ion batteries. Electrochim. Acta 2019, 295, 498–506.

54

Xu, T.; Wang, D.; Qiu, P.; Zhang, J.; Wang, Q.; Xia, B. J.; Xie, X. H. In situ synthesis of porous Si dispersed in carbon nanotube intertwined expanded graphite for high-energy lithium-ion batteries. Nanoscale 2018, 10, 16638–16644.

55

Xie, H. W.; Zhao, H. J.; Liao, J. Y.; Yin, H. Y.; Bard, A. J. Electrochemically controllable coating of a functional silicon film on carbon materials. Electrochim. Acta 2018, 269, 610–616.

56

Shi, L.; Wang, W. K.; Wang, A. B.; Yuan, K. G.; Jin, Z. Q.; Yang, Y. S. Si nanoparticles adhering to a nitrogen-rich porous carbon framework and its application as a lithium-ion battery anode material. J. Mater. Chem. A 2015, 3, 18190–18197.

57

Fang, S.; Shen, L. F.; Tong, Z. K.; Zheng, H.; Zhang, F.; Zhang, X. G. Si nanoparticles encapsulated in elastic hollow carbon fibres for Li-ion battery anodes with high structural stability. Nanoscale 2015, 7, 7409–7414.

58

Chang, J. B.; Huang, X. K.; Zhou, G. H.; Cui, S. M.; Hallac, P. B.; Jiang, J. W.; Hurley, P. T.; Chen, J. H. Multilayered Si nanoparticle/reduced graphene oxide hybrid as a high-performance lithium-ion battery anode. Adv. Mater. 2014, 26, 758–764.

59

Roy, A. K.; Zhong, M. J.; Schwab, M. G.; Binder, A.; Venkataraman, S. S.; Tomović, Ž. Preparation of a binder-free three-dimensional carbon foam/silicon composite as potential material for lithium ion battery anodes. ACS Appl. Mater. Interfaces 2016, 8, 7343–7348.

60

Suresh, S.; Wu, Z. P.; Bartolucci, S. F.; Basu, S.; Mukherjee, R.; Gupta, T.; Hundekar, P.; Shi, Y. F.; Lu, T. M.; Koratkar, N. Protecting silicon film anodes in lithium-ion batteries using an atomically thin graphene drape. ACS Nano 2017, 11, 5051–5061.

61

Jiao, L. S.; Liu, J. Y.; Li, H. Y.; Wu, T. S.; Li, F. H.; Wang, H. Y.; Niu, L. Facile synthesis of reduced graphene oxide-porous silicon composite as superior anode material for lithium-ion battery anodes. J. Power Sources 2016, 315, 9–15.

62

Wang, X. L.; Li, G.; Seo, M. H.; Lui, G.; Hassan, F. M.; Feng, K.; Xiao, X. C.; Chen, Z. W. Carbon-coated silicon nanowires on carbon fabric as self-supported electrodes for flexible lithium-ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 9551–9558.

63

Wang, W.; Gu, L.; Qian, H. L.; Zhao, M.; Ding, X.; Peng, X. S.; Sha, J.; Wang, Y. W. Carbon-coated silicon nanotube arrays on carbon cloth as a hybrid anode for lithium-ion batteries. J. Power Sources 2016, 307, 410–415.

64

Jeong, S.; Li, X. L.; Zheng, J. M.; Yan, P. F.; Cao, R. G.; Jung, H. J.; Wang, C. M.; Liu, J.; Zhang, J. G. Hard carbon coated nano-Si/graphite composite as a high performance anode for Li-ion batteries. J. Power Sources 2016, 329, 323–329.

65

Xu, R. T.; Wang, G.; Zhou, T. F.; Zhang, Q.; Cong, H. P.; Xin, S.; Rao, J.; Zhang, C. F.; Liu, Y. K.; Guo, Z. P. et al. Rational design of Si@carbon with robust hierarchically porous custard-apple-like structure to boost lithium storage. Nano Energy 2017, 39, 253–261.

66

Xu, Q.; Li, J. Y.; Sun, J. K.; Yin, Y. X.; Wan, L. J.; Guo, Y. G. Watermelon-inspired Si/C microspheres with hierarchical buffer structures for densely compacted lithium-ion battery anodes. Adv. Energy Mater. 2017, 7, 1601481.

67

Chen, S. Q.; Shen, L. F.; van Aken, P. A.; Maier, J.; Yu, Y. Dual-functionalized double carbon shells coated silicon nanoparticles for high performance lithium-ion batteries. Adv. Mater. 2017, 29, 1605650.

68

Zhang, Y. C.; You, Y.; Xin, S.; Yin, Y. X.; Zhang, J.; Wang, P.; Zheng, X. S.; Cao, F. F.; Guo, Y. G. Rice husk-derived hierarchical silicon/nitrogen-doped carbon/carbon nanotube spheres as low-cost and high-capacity anodes for lithium-ion batteries. Nano Energy 2016, 25, 120–127.

69

Hwang, T. H.; Lee, Y. M.; Kong, B. S.; Seo, J. S.; Choi, J. W. Electrospun core-shell fibers for robust silicon nanoparticle-based lithium ion battery anodes. Nano Lett. 2012, 12, 802–807.

70

Zhai, W.; Ai, Q.; Chen, L. N.; Wei, S. Y.; Li, D. P.; Zhang, L.; Si, P. C.; Feng, J. K.; Ci, L. J. Walnut-inspired microsized porous silicon/graphene core-shell composites for high-performance lithium-ion battery anodes. Nano Res. 2017, 10, 4274–4283.

71

Yang, J. P.; Wang, Y. X.; Chou, S. L.; Zhang, R. Y.; Xu, Y. F.; Fan, J. W.; Zhang, W. X.; Liu, H. K.; Zhao, D. Y.; Dou, S. X. Yolk-shell silicon-mesoporous carbon anode with compact solid electrolyte interphase film for superior lithium-ion batteries. Nano Energy 2015, 18, 133–142.

72

Liu, N.; Lu, Z. D.; Zhao, J.; McDowell, M. T.; Lee, H. W.; Zhao, W. T.; Cui, Y. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotechnol. 2014, 9, 187–192.

73

Lin, D. C.; Lu, Z. D; Hsu, P. C.; Lee, H. R.; Liu, N.; Zhao, J.; Wang, H. T.; Liu, C.; Cui, Y. A high tap density secondary silicon particle anode fabricated by scalable mechanical pressing for lithium-ion batteries. Energy Environ. Sci. 2015, 8, 2371–2376.

74

Hu, Y. S.; Demir-Cakan, R.; Titirici, M. M.; Muller, J. O.; Schlögl, R.; Antonietti, M.; Maier, J. Superior storage performance of a Si@SiOx/C nanocomposite as anode material for lithium-ion batteries. Angew. Chem., Int. Ed. 2008, 47, 1645–1649.

75

Yao, Y.; McDowell, M. T.; Ryu, I.; Wu, H.; Liu, N.; Hu, L. B.; Nix, W. D.; Cui, Y. Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Lett. 2011, 11, 2949–2954.

76

Su, X.; Wu, Q. L.; Li, J. C.; Xiao, X. C.; Lott, A.; Lu, W. Q.; Sheldon, B. W.; Wu, J. Silicon-based nanomaterials for lithium-ion batteries: A review. Adv. Energy Mater. 2014, 4, 1300882.

77

Du, F. H.; Ni, Y. Z.; Wang, Y.; Wang, D.; Ge, Q.; Chen, S.; Yang, H. Y. Green fabrication of silkworm cocoon-like silicon-based composite for high-performance Li-ion batteries. ACS Nano 2017, 11, 8628–8635.

78

Li, X. L.; Yan, P. F.; Xiao, X. C.; Woo, J. H.; Wang, C. M.; Liu, J.; Zhang, J. G. Design of porous Si/C-graphite electrodes with long cycle stability and controlled swelling. Energy Environ. Sci. 2017, 10, 1427–1434.

79

Yu, Y.; Gu, L.; Zhu, C. B.; Tsukimoto, S.; van Aken, P. A.; Maier, J. Reversible storage of lithium in silver-coated three-dimensional macroporous silicon. Adv. Mater. 2010, 22, 2247–2250.

80

Sethuraman, V. A.; Kowolik, K.; Srinivasan, V. Increased cycling efficiency and rate capability of copper-coated silicon anodes in lithium-ion batteries. J. Power Sources 2011, 196, 393–398.

81

Jin, Y.; Li, S.; Kushima, A.; Zheng, X. Q.; Sun, Y. M.; Xie, J.; Sun, J.; Xue, W. J.; Zhou, G. M.; Wu, J. et al. Self-healing SEI enables full-cell cycling of a silicon-majority anode with a coulombic efficiency exceeding 99.9%. Energy Environ. Sci. 2017, 10, 580–592.

82

Ma, T. Y.; Yu, X. N.; Li, H. Y.; Zhang, W. G.; Cheng, X. L.; Zhu, W. T.; Qiu, X. P. High volumetric capacity of hollow structured SnO2@Si nanospheres for lithium-ion batteries. Nano Lett. 2017, 17, 3959–3964.

83

Li, J. C.; Dudney, N. J.; Nanda, J.; Liang, C. D. Artificial solid electrolyte interphase to address the electrochemical degradation of silicon electrodes. ACS Appl. Mater. Interfaces 2014, 6, 10083–10088.

84

Xu, X. Y.; Ai, Q.; Pan, L.; Ma, X. X.; Zhai, W.; An, Y. L.; Hou, G. M.; Chen, J. H.; Zhang, L.; Si, P. C. et al. Li7P3S11 solid electrolyte coating silicon for high-performance lithium-ion batteries. Electrochim. Acta 2018, 276, 325–332.

85

Ai, Q.; Zhou, P.; Zhai, W.; Ma, X. X.; Hou, G. M.; Xu, X. Y.; Chen, L. N.; Li, D. P.; Chen, L.; Zhang, L. et al. Synergistic double-shell coating of graphene and Li4SiO4 on silicon for high performance lithium-ion battery application. Diamond Relat. Mater. 2018, 88, 60–66.

86

Xu, T. J.; Lin, N.; Cai, W. L.; Yi, Z.; Zhou, J.; Han, Y.; Zhu, Y. C.; Qian, Y. T. Stabilizing Si/graphite composites with Cu and in situ synthesized carbon nanotubes for high-performance Li-ion battery anodes. Inorg. Chem. Front. 2018, 5, 1463–1469.

87

Cheng, X. W.; Zhao, D. L.; Wu, L. L.; Ding, Z. W.; Hu, T.; Meng, S. Core-shell structured Si@Ni nanoparticles encapsulated in graphene nanosheet for lithium ion battery anodes with enhanced reversible capacity and cyclic performance. Electrochim. Acta 2018, 265, 348–354.

88

Shin, J.; Cho, E. Agglomeration mechanism and a protective role of Al2O3 for prolonged cycle life of Si anode in lithium-ion batteries. Chem. Mater. 2018, 30, 3233–3243.

89

Wang, C.; Han, Y. Y.; Li, S. H.; Chen, T.; Yu, J. M.; Lu, Z. D. Thermal lithiated-TiO2: A robust and electron-conducting protection layer for Li-Si alloy anode. ACS Appl. Mater. Interfaces 2018, 10, 12750–12758.

90

Yang, J. P.; Wang, Y. X.; Li, W.; Wang, L. J.; Fan, Y. C.; Jiang, W.; Luo, W.; Wang, Y.; Kong, B.; Selomulya, C. et al. Amorphous TiO2 shells: A vital elastic buffering layer on silicon nanoparticles for high-performance and safe lithium storage. Adv. Mater. 2017, 29, 1700523.

91

Kim, D.; Park, M.; Kim, S. M.; Shim, H. C.; Hyun, S.; Han, S. M. Conversion reaction of nanoporous ZnO for stable electrochemical cycling of binderless Si microparticle composite anode. ACS Nano 2018, 12, 10903–10913.

92

Carbonari, G.; Maroni, F.; Birrozzi, A.; Tossici, R.; Croce, F.; Nobili, F. Synthesis and characterization of Si nanoparticles wrapped by V2O5 nanosheets as a composite anode material for lithium-ion batteries. Electrochim. Acta 2018, 281, 676–683.

93

Wang, G. Q.; Wen, Z. S.; Du, L. L.; Li, S.; Ji, S. J.; Sun, J. C. A core-shell Si@Nb2O5 composite as an anode material for lithium-ion batteries. RSC Adv. 2016, 6, 39728–39733.

94

Xu, Q.; Sun, J. K.; Yu, Z. L.; Yin, Y. X.; Xin, S.; Yu, S. H.; Guo, Y. G. SiOx encapsulated in graphene bubble film: An ultrastable Li-ion battery anode. Adv. Mater. 2018, 30, 1707430.

95

Huang, C.; Kim, A.; Chung, D. J.; Park, E.; Young, N. P.; Jurkschat, K.; Kim, H.; Grant, P. S. Multiscale engineered Si/SiOx nanocomposite electrodes for lithium-ion batteries using layer-by-layer spray deposition. ACS Appl. Mater. Interfaces 2018, 10, 15624–15633.

96

Li, Z. L.; Zhao, H. L.; Lv, P. P.; Zhang, Z. J.; Zhang, Y.; Du, Z. H.; Teng, Y. Q.; Zhao, L. N.; Zhu, Z. M. Watermelon-like structured SiOx-TiO2@C nanocomposite as a high-performance lithium-ion battery anode. Adv. Funct. Mater. 2018, 28, 1605711.

97

Yu, Q.; Ge, P. P.; Liu, Z. H.; Xu, M.; Yang, W.; Zhou, L.; Zhao, D. Y.; Mai, L. Q. Ultrafine SiOx/C nanospheres and their pomegranate-like assemblies for high-performance lithium storage. J. Mater. Chem. A 2018, 6, 14903– 14909.

98

Feng, X. J.; Yang, J.; Lu, Q. W.; Wang, J. L.; Nuli, Y. Facile approach to SiOx/Si/C composite anode material from bulk SiO for lithium ion batteries. Phys. Chem. Chem. Phys. 2013, 15, 14420–14426.

99

Park, M. S.; Park, E.; Lee, J.; Jeong, G.; Kim, K. J.; Kim, J. H.; Kim, Y. J.; Kim, H. Hydrogen silsequioxane-derived Si/SiOx nanospheres for high-capacity lithium storage materials. ACS Appl. Mater. Interfaces 2014, 6, 9608–9613.

100

Bai, X. J.; Yu, Y. Y.; Kung, H. H.; Wang, B.; Jiang, J. M. Si@SiOx/graphene hydrogel composite anode for lithium-ion battery. J. Power Sources 2016, 306, 42–48.

Nano Research
Pages 1739-1749
Cite this article:
Tao W, Wang P, You Y, et al. Strategies for improving the storage performance of silicon-based anodes in lithium-ion batteries. Nano Research, 2019, 12(8): 1739-1749. https://doi.org/10.1007/s12274-019-2361-4
Topics:

782

Views

85

Crossref

N/A

Web of Science

84

Scopus

10

CSCD

Altmetrics

Received: 14 December 2018
Revised: 21 February 2019
Accepted: 26 February 2019
Published: 28 March 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return