AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

The fabrication and application of Ni-DNA nanowire-based nanoelectronic devices

Pang-Chia Chang1,§Chia-Yu Chang2,3,§Wen-Bin Jian1( )Chiun-Jye Yuan2,3Yu-Chang Chen3Chia-Ching Chang2,3,4( )
Department of Electrophysics,"National Chiao Tung University",Hsinchu,30010,Taiwan, China;
Department of Biological Science and Technology,"National Chiao Tung University",Hsinchu,30068,Taiwan, China;
Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B),"National Chiao Tung University",Hsinchu,30068,Taiwan, China;
Institute of Physics,"Academia Sinica",Taipei,11529,Taiwan, China;

§ Pang-Chia Chang and Chia-Yu Chang contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

DNA is a self-assembled, double stranded natural molecule that can chelate and align nickel ions between its base pairs. The fabrication of a DNA-guided nickel ion chain (Ni-DNA) device was successful, as indicated by the conducting currents exhibiting a Ni ion redox reaction-driven negative differential resistance effect, a property unique to mem-elements (1). The redox state of nickel ions in the Ni-DNA device is programmable by applying an external bias with different polarities and writing times (2). The multiple states of Ni-DNA-based memristive and memcapacitive systems were characterized (3). As such, the development of Ni-DNA nanowire device-based circuits in the near future is proposed.

References

1

Friedman, R. S.; McAlpine, M. C.; Ricketts, D. S.; Ham, D.; Lieber, C. M. Nanotechnology: High-speed integrated nanowire circuits. Nature 2005, 434, 1085.

2

Garnett, E. C.; Brongersma, M. L.; Cui, Y.; McGehee, M. D. Nanowire solar cells. Annu. Rev. Mater. Res. 2011, 41, 269–295.

3

Liu, X.; He, L. C.; Zheng, J. Z.; Guo, J.; Bi, F.; Ma, X.; Zhao, K.; Liu, Y. L.; Song, R.; Tang, Z. Y. Solar-light-driven renewable butanol separation by core-shell Ag@ZIF-8 nanowires. Adv. Mater. 2015, 27, 3273–3277.

4

Yin, H. J.; Zhao, S. L.; Zhao, K.; Muqsit, A.; Tang, H. J.; Chang, L.; Zhao, H. J.; Gao, Y.; Tang, Z. Y. Ultrathin platinum nanowires grown on single- layered nickel hydroxide with high hydrogen evolution activity. Nat. Commun. 2015, 6, 6430.

5

Li, Z. T.; Zhu, Z. N.; Liu, W. J.; Zhou, Y. L.; Han, B.; Gao, Y.; Tang, Z. Y. Reversible plasmonic circular dichroism of Au nanorod and DNA assemblies. J. Am. Chem. Soc. 2012, 134, 3322–3325.

6

Hahm, J. I.; Lieber, C. M. Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano Lett. 2004, 4, 51–54.

7

Chung, S. W.; Yu, J. Y.; Heath, J. R. Silicon nanowire devices. Appl. Phys. Lett. 2000, 76, 2068–2070.

8

Duan, X. F.; Huang, Y.; Cui, Y.; Wang, J. F.; Lieber, C. M. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 2001, 409, 66–69.

9

Zeng, X. L.; Otnes, G.; Heurlin, M.; Mourão, R. T.; Borgström, M. T. InP/GaInP nanowire tunnel diodes. Nano Res. 2018, 11, 2523–2531.

10

Huang, Y.; Duan, X. F.; Cui, Y.; Lieber, C. M. Gallium nitride nanowire nanodevices. Nano Lett. 2002, 2, 101–104.

11

Chèze, C.; Geelhaar, L.; Brandt, O.; Weber, W. M.; Riechert, H.; Munch, S.; Rothemund, R.; Reitzenstein, S.; Forchel, A.; Kehagias, T. et al. Direct comparison of catalyst-free and catalyst-induced GaN nanowires. Nano Res. 2010, 3, 528–536.

12

Heo, Y. W.; Tien, L. C.; Kwon, Y.; Norton, D. P.; Pearton, S. J.; Kang, B. S.; Ren, F. Depletion-mode ZnO nanowire field-effect transistor. Appl. Phys. Lett. 2004, 85, 2274–2276.

13

Xu, F.; Qin, Q. Q.; Mishra, A.; Gu, Y.; Zhu, Y. Mechanical properties of ZnO nanowires under different loading modes. Nano Res. 2010, 3, 271–280.

14

Lai, J. J.; Li, Y. H.; Feng, B. R.; Tang, S. J.; Jian, W. B.; Fu, C. M.; Chen, J. T.; Wang, X.; Lee, P. S. Interplay of nanoscale, hybrid P3HT/ZTO interface on optoelectronics and photovoltaic cells. ACS Appl. Mater. Interfaces 2017, 9, 33212–33219.

15

Martel, R.; Schmidt, T.; Shea, H. R.; Hertel, T.; Avouris, P. Single- and multi-wall carbon nanotube field-effect transistors. Appl. Phys. Lett. 1998, 73, 2447–2449.

16

Tans, S. J.; Verschueren, A. R. M.; Dekker, C. Room-temperature transistor based on a single carbon nanotube. Nature 1998, 393, 49–52.

17

Lin, Y. F.; Chen, C. H.; Xie, W. J.; Yang, S. H.; Hsu, C. S.; Lin, M. T.; Jian, W. B. Nano approach investigation of the conduction mechanism in polyaniline nanofibers. Acs Nano 2011, 5, 1541–1548.

18

Lin, Y. F.; Chiu, S. C.; Wang, S. T.; Fu, S. K.; Chen, C. H.; Xie, W. J.; Yang, S. H.; Hsu, C. S.; Chen, J. F.; Zhou, X. F. et al. Dielectrophoretic placement of quasi-zero-, one-, and two-dimensional nanomaterials into nanogap for electrical characterizations. Electrophoresis 2012, 33, 2475–2481.

19

Lin, Y. F.; Jian, W. B. The impact of nanocontact on nanowire based nanoelectronics. Nano Lett. 2008, 8, 3146–3150.

20

Chu, H. L.; Chiu, S. C.; Sung, C. F.; Tseng, W.; Chang, Y. C.; Jian, W. B.; Chen, Y. C.; Yuan, C. J.; Li, H. Y.; Gu, F. X. et al. Programmable redox state of the nickel ion chain in DNA. Nano Lett. 2014, 14, 1026–1031.

21

Chu, H. L.; Lai, J. J.; Wu, L. Y.; Chang, S. L.; Liu, C. M.; Jian, W. B.; Chen, Y. C.; Yuan, C. J.; Wu, T. S.; Soo, Y. L. et al. Exploration and characterization of the memcapacitor and memristor properties of Ni-DNA nanowire devices. NPG Asia Mater. 2017, 9, e430.

22

Song, I. K.; Barteau, M. A. Correlation of negative differential resistance (NDR) peak voltages of nanostructured heteropolyacid (HPA) monolayers with one electron reduction potentials of HPA catalysts. Langmuir 2004, 20, 1850–1855.

23

Tang, Q.; Moon, H. K.; Lee, Y.; Yoon, S. M.; Song, H. J.; Lim, H.; Choi, H. C. Redox-mediated negative differential resistance behavior from metalloproteins connected through carbon nanotube nanogap electrodes. J. Am. Chem. Soc. 2007, 129, 11018–11019.

24

Zheng, L.; Sun, B.; Mao, S. S.; Zhu, S. H.; Zheng, P. P.; Zhang, Y.; Lei, M.; Zhao, Y. Metal ions redox induced repeatable nonvolatile resistive switching memory behavior in biomaterials. ACS Appl. Bio Mater. 2018, 1, 496–501.

25

Eigler, D. M.; Schweizer, E. K. Positioning single atoms with a scanning tunnelling microscope. Nature 1990, 344, 524–526.

26

Clérac, R.; Cotton, F. A.; Dunbar, K. R.; Murillo, C. A.; Pascual, I.; Wang, X. P. Further study of the linear trinickel(Ⅱ) complex of dipyridylamide. Inorg. Chem. 1999, 38, 2655–2657.

27

Chang, H. C.; Li, J. T.; Wang, C. C.; Lin, T. W.; Lee, H. C.; Lee, G. H.; Peng, S. M. Linear five-centred chromium multiple bonds bridged by four tpda2− ligands[tpda2− = tripyridyldiamido dianion]—Synthesis and structural studies. Eur. J. Inorg. Chem. 1999, 1999, 1243–1251.

28

Berry, J. F.; Cotton, F. A.; Fewox, C. S.; Lu, T. B.; Murillo, C. A.; Wang, X. P. Extended metal atom chains (EMACs) of five chromium or cobalt atoms: Symmetrical or unsymmetrical? Dalton Trans. 2004, 2297–2302.

29

Peng, S. M.; Wang, C. C.; Jang, Y. L.; Chen, Y. H.; Li, F. Y.; Mou, C. Y.; Leung, M. K. One-dimensional metal string complexes. J. Magn. Magn. Mater. 2000, 209, 80–83.

30

Ismayilov, R. H.; Wang, W. Z.; Lee, G. H.; Yeh, C. Y.; Hua, S. A.; Song, Y.; Rohmer, M. M.; Bénard, M.; Peng, S. M. Two linear undecanickel mixed-valence complexes: Increasing the size and the scope of the electronic properties of nickel metal strings. Angew. Chem., Int. Ed. 2011, 50, 2045–2048.

31

Chen, I. W. P.; Fu, M. D.; Tseng, W. H.; Yu, J. Y.; Wu, S. H.; Ku, C. J.; Chen, C. H.; Peng, S. M. Conductance and stochastic switching of ligand- supported linear chains of metal atoms. Angew. Chem., Int. Ed. 2006, 45, 5814–5818.

32

Pandian, S. R. K.; Yuan, C. J.; Lin, C. C.; Wang, W. H.; Chang, C. C. DNA-based nanowires and nanodevices. Adv. Phys. X 2017, 2, 22–34.

33

Keren, K.; Berman, R. S.; Buchstab, E.; Sivan, U.; Braun, E. DNA-templated carbon nanotube field-effect transistor. Science 2003, 302, 1380–1382.

34

Zhang, J. P.; Liu, Y.; Ke, Y. G.; Yan, H. Periodic square-like gold nanoparticle arrays templated by self-assembled 2D DNA nanogrids on a surface. Nano Lett. 2006, 6, 248–251.

35

Ke, Y. G.; Voigt, N. V.; Gothelf, K. V.; Shih, W. M. Multilayer DNA origami packed on hexagonal and hybrid lattices. J. Am. Chem. Soc. 2012, 134, 1770–1774.

36

Majumder, U.; Rangnekar, A.; Gothelf, K. V.; Reif, J. H.; LaBean, T. H. Design and construction of double-decker tile as a route to three-dimensional periodic assembly of DNA. J. Am. Chem. Soc. 2011, 133, 3843–3845.

37

Gates, E. P.; Dearden, A. M.; Woolley, A. T. DNA-templated lithography and nanofabrication for the fabrication of nanoscale electronic circuitry. Crit. Rev. Anal. Chem. 2014, 44, 354–370.

38

Amir, Y.; Ben-Ishay, E.; Levner, D.; Ittah, S.; Abu-Horowitz, A.; Bachelet, I. Universal computing by DNA origami robots in a living animal. Nat Nanotechnol 2014, 9, 353–357.

39

Zadegan, R. M.; Jepsen, M. D. E.; Hildebrandt, L. L.; Birkedal, V.; Kjems, J. Construction of a fuzzy and boolean logic gates based on DNA. Small 2015, 11, 1811–1817.

40

Del Grosso, E.; Dallaire, A. M.; Vallée-Bélisle, A.; Ricci, F. Enzyme-operated DNA-based nanodevices. Nano Lett. 2015, 15, 8407–8411.

41

Yurke, B.; Turberfield, A. J.; Mills, Jr. A. P.; Simmel, F. C.; Neumann, J. L. A DNA-fuelled molecular machine made of DNA. Nature 2000, 406, 605–608.

42

Liedl, T.; Olapinski, M.; Simmel, F. C. A surface-bound DNA switch driven by a chemical oscillator. Angew. Chem., Int. Ed. 2006, 45, 5007–5010.

43

Surana S.; Modi, S.; Krishnan, Y. An autonomous DNA nanodevice captures pH maps of living cells in culture and in vivo. In Proceedings of the 17th International Conference on DNA Computing and Molecular Programming, Pasadena, CA, USA, 2011, pp 22–31.

44

Jangjian, P. C.; Liu, T. F.; Li, M. Y.; Tsai, M. S.; Chang, C. C. Room temperature negative differential resistance in DNA-based molecular devices. Appl. Phys. Lett. 2009, 94, 043105.

45

Jangjian, P. C.; Liu, T. F.; Tsai, C. M.; Li, M. Y.; Tsai, M. S.; Tseng, S. H.; Cheng, T. M.; Chang, C. C. DNA mismatch detection by metal ion enhanced impedance analysis. Chin. J. Phys. 2009, 47, 740–747.

46

Tseng, S. H.; JangJian, P. C.; Tsai, C. M.; Cheng, T. M.; Chu, H. L.; Chang, Y. C.; Chung, W. H.; Chang, C. C. Ni2+-enhanced charge transport via π–π stacking corridor in metallic DNA. Biophys. J. 2011, 100, 1042–1048.

47

Rakitin, A.; Aich, P.; Papadopoulos, C.; Kobzar, Y.; Vedeneev, A. S.; Lee, J. S.; Xu, J. M. Metallic conduction through engineered DNA: DNA nanoelectronic building blocks. Phys. Rev. Lett. 2001, 86, 3670–3673.

48

Wood, D. O.; Dinsmore, M. J.; Bare, G. A.; Lee, J. S. M-DNA is stabilised in G•C tracts or by incorporation of 5-fluorouracil. Nucleic Acids Res. 2002, 30, 2244–2250.

49

Jian, P. C. J.; Liu, T. F.; Tsai, C. M.; Tsai, M. S.; Chang, C. C. Ni2+ doping DNA: A semiconducting biopolymer. Nanotechnology 2008, 19, 355703.

50

Dobre, C.; Xhafa, F. Intelligent services for Big Data science. Future Gener. Comput. Syst. 2014, 37, 267–281.

51

Feynman, R. P. There's plenty of room at the bottom. Caltech. Eng. Sci. 1960, 23, 22–36.

52

Ruiz, R.; Kang, H. M.; Detcheverry, F. A.; Dobisz, E.; Kercher, D. S.; Albrecht, T. R.; de Pablo, J. J.; Nealey, P. F. Density multiplication and improved lithography by directed block copolymer assembly. Science 2008, 321, 936–939.

53

Mendes, P. M.; Jacke, S.; Critchley, K.; Plaza, J.; Chen, Y.; Nikitin, K.; Palmer, R. E.; Preece, J. A.; Evans, S. D.; Fitzmaurice, D. Gold nanoparticle patterning of silicon wafers using chemical e-beam lithography. Langmuir 2004, 20, 3766–3768.

54

Wolpert, D.; Behnen, E.; Sigal, L.; Chan, Y.; Téllez, G. E.; Bradley, D.; Serton, R.; Veerabhadraiah, R.; Ansley, W.; Bianchi, A. et al. IBM z14: Enabling physical design in 14-nm technology for high-performance, high-reliability microprocessors. IBM J. Res. Dev. 2018, 62, 10: 1–10: 14.

55

Topol, A. W.; La Tulipe, D. C.; Shi, L.; Frank, D. J.; Bernstein, K.; Steen, S. E.; Kumar, A.; Singco, G. U.; Young, A. M.; Guarini, K. W. et al. Three- dimensional integrated circuits. IBM J. Res. Dev. 2006, 50, 491–506.

56

Lakshmanan, V. H.; Gayathri, S. A basic architecture for a multistate memory system using nano-antennas. In Proceedings of the 4th IEEE Conference on Nanotechnology, Munich, Germany, 2004, pp 74–76.

57

Avci, C. O.; Mann, M.; Tan, A. J.; Gambardella, P.; Beach, G. S. D. A multi- state memory device based on the unidirectional spin Hall magnetoresistance. Appl. Phys. Lett. 2017, 110, 203506.

58

Yang, J. J.; Strukov, D. B.; Stewart, D. R. Memristive devices for computing. Nat Nanotechnol. 2013, 8, 13–24.

59

Carter, D. E. Oxidation-reduction reactions of metal ions. Environ Health Perspect. 1995, 103, 17–19.

60

Pershin, Y. V.; Martinez-Rinconl, J.; Di Ventra, M. Memory circuit elements: From systems to applications. J. Comput. Theor. Nanos. 2011, 8, 441–448.

Nano Research
Pages 1293-1300
Cite this article:
Chang P-C, Chang C-Y, Jian W-B, et al. The fabrication and application of Ni-DNA nanowire-based nanoelectronic devices. Nano Research, 2019, 12(6): 1293-1300. https://doi.org/10.1007/s12274-019-2363-2
Topics:
Part of a topical collection:

969

Views

8

Crossref

N/A

Web of Science

8

Scopus

0

CSCD

Altmetrics

Received: 21 December 2018
Revised: 25 February 2019
Accepted: 27 February 2019
Published: 29 May 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return