AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Dendrite-free sandwiched ultrathin lithium metal anode with even lithium plating and stripping behavior

Tao LiPeng ShiRui ZhangHe LiuXin-Bing ChengQiang Zhang ( )
Beijing Key Laboratory of Green Chemical Reaction Engineering and TechnologyDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China
Show Author Information

Graphical Abstract

Abstract

Thin artificial solid electrolyte coatings are effective to enhance the electrochemical performances and safety issues of lithium (Li) metal anode. However, massive and efficient fabrication of artificial protection layers on Li metal anode surface remains challenging. Herein, we describe a sandwiched Li metal anode fabricated through a continuous roll to roll calendering method to implant a thin and large-area carbon layer on Li metal anode surface at room temperature. Specifically, a carbon layer (~ 3 μm in thickness) can be entirely grafted from Cu substrate to 50 μm Li belt surface due to the stickiness of metallic Li. The carbon layer not only plays a critical role in providing rich nucleation sites for Li plating, but more importantly diminishes the metallurgical nonuniformity effects (slip lines) on stripping. Therefore, even Li plating/stripping morphologies are achieved and the as-obtained sandwiched Li/C composite anodes exhibit improved cycling stability both in Li | LiFePO4 and Li | S coin cells and pouch cells. This continuous roll to roll calendering strategy opens a new avenue for grafting various thin artificial protection layers on Li metal surface for safe rechargeable batteries.

Electronic Supplementary Material

Download File(s)
12274_2019_2368_MOESM1_ESM.pdf (1.5 MB)

References

1

Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: A review. Chem. Rev. 2017, 117, 10403–10473.

2

Lin, D. C.; Liu, Y. Y.; Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 2017, 12, 194–206.

3

Cheng, X. B.; Yan, C.; Huang, J. Q.; Li, P.; Zhu, L.; Zhao, L. D.; Zhang, Y. Y.; Zhu, W. C.; Yang, S. T.; Zhang, Q. The gap between long lifespan Li-S coin and pouch cells: The importance of lithium metal anode protection. Energy Storage Mater. 2017, 6, 18–25.

4

Albertus, P.; Babinec, S.; Litzelman, S.; Newman, A. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat. Energy 2017, 3, 16–21.

5

Zhang, X. Q.; Zhao, C. Z.; Huang, J. Q.; Zhang, Q. Recent advances in energy chemical engineering of next-generation lithium batteries. Engineering 2018, 4, 831–847.

6

Shen, X.; Liu, H.; Cheng, X. B.; Yan, C.; Huang, J. Q. Beyond lithium ion batteries: Higher energy density battery systems based on lithium metal anodes. Energy Storage Mater. 2018, 12, 161–175.

7

Wang, L.; Zhou, Z. Y.; Yan, X.; Hou, F.; Wen, L.; Luo, W. B.; Liang, J.; Dou, S. X. Engineering of lithium-metal anodes towards a safe and stable battery. Energy Storage Mater. 2018, 14, 22–48.

8

Yang, H. J.; Guo, C.; Naveed, A.; Lei, J. Y.; Yang, J.; Nuli, Y.; Wang, J. L. Recent progress and perspective on lithium metal anode protection. Energy Storage Mater. 2018, 14, 199–221.

9

Xu, X. L.; Wang, S. J.; Wang, H.; Hu, C.; Jin, Y.; Liu, J. B.; Yan, H. Recent progresses in the suppression method based on the growth mechanism of lithium dendrite. J. Energy Chem. 2018, 27, 513–527.

10

Li, L. Y.; Chen, C. G.; Yu, A. S. New electrochemical energy storage systems based on metallic lithium anode—the research status, problems and challenges of lithium-sulfur, lithium-oxygen and all solid state batteries. Sci. China Chem. 2017, 60, 1402–1412.

11

Lin, D. C.; Liu, Y. Y.; Pei, A.; Cui, Y. Nanoscale perspective: Materials designs and understandings in lithium metal anodes. Nano Res. 2017, 10, 4003–4026.

12

Kong, L.; Peng, H. J.; Huang, J. Q.; Zhang, Q. Review of nanostructured current collectors in lithium–sulfur batteries. Nano Res. 2017, 10, 4027–4054.

13

Liu, Y. Y.; Lin, D. C.; Li, Y. Z.; Chen, G. X.; Pei, A.; Nix, O.; Li, Y. B.; Cui, Y. Solubility-mediated sustained release enabling nitrate additive in carbonate electrolytes for stable lithium metal anode. Nat. Commun. 2018, 9, 3656.

14

Fan, X. L.; Chen, L.; Borodin, O.; Ji, X.; Chen, J.; Hou, S.; Deng, T.; Zheng, J.; Yang, C. Y.; Liou, S. C. et al. Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries. Nat. Nanotechnol. 2018, 13, 715–722.

15

Chen, S. R.; Zheng, J. M.; Mei, D. H.; Han, K. S.; Engelhard, M. H.; Zhao, W. G.; Xu, W.; Liu, J.; Zhang, J. G. High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes. Adv. Mater. 2018, 30, 1706102.

16

Pang, Q.; Liang, X.; Kochetkov, I. R.; Hartmann, P.; Nazar, L. F. Stabilizing lithium plating by a biphasic surface layer formed in situ. Angew. Chem. , Int. Ed. 2018, 57, 9795–9798.

17

Chen, K. H.; Wood, K. N.; Kazyak, E.; Lepage, W. S.; Davis, A. L.; Sanchez, A. J.; Dasgupta, N. P. Dead lithium: Mass transport effects on voltage, capacity, and failure of lithium metal anodes. J. Mater. Chem. A 2017, 5, 11671–11681.

18

Xue, P.; Liu, S. R.; Shi, X. L.; Sun, C.; Lai, C.; Zhou, Y.; Sui, D.; Chen, Y. S.; Liang, J. J. A hierarchical silver-nanowire-graphene host enabling ultrahigh rates and superior long-term cycling of lithium-metal composite anodes. Adv. Mater. 2018, 30, 1804165.

19

Gao, Z. H.; Sun, H. B.; Fu, L.; Ye, F. L.; Zhang, Y.; Luo, W.; Huang, Y. H. Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries. Adv. Mater. 2018, 30, 1705702

20

Zhang, R.; Chen, X.; Shen, X.; Zhang, X. Q.; Chen, X. R.; Cheng, X. B.; Yan, C.; Zhao, C. Z.; Zhang, Q. Coralloid carbon fiber-based composite lithium anode for robust lithium metal batteries. Joule 2018, 2, 764–777.

21

Zhao, C. Z.; Chen, P. Y.; Zhang, R.; Chen, X.; Li, B. Q.; Zhang, X. Q.; Cheng, X. B.; Zhang, Q. An ion redistributor for dendrite-free lithium metal anodes. Sci. Adv. 2018, 4, eaat3446.

22

Zhang, X. Y.; Lv, R. J.; Wang, A. X.; Guo, W. Q.; Liu, X. J.; Luo, J. Y. Mxene aerogel scaffolds for high-rate lithium metal anodes. Angew. Chem. , Int. Ed. 2018, 57, 15028–15033.

23

Yan, K.; Sun, B.; Munroe, P.; Wang, G. X. Three-dimensional pie-like current collectors for dendrite-free lithium metal anodes. Energy Storage Mater. 2018, 11, 127–133.

24

Liu, S. F.; Xia, X. H.; Yao, Z. J.; Wu, J. B.; Zhang, L. Y.; Deng, S. J.; Zhou, C. G.; Shen, S. H.; Wang, X. L.; Tu, J. P. Straw–brick-like carbon fiber cloth/lithium composite electrode as an advanced lithium metal anode. Small Methods 2018, 2, 1800035.

25

Liu, S. F.; Xia, X. H.; Deng, S. J.; Zhang, L. Y.; Li, Y. Q.; Wu, J. B.; Wang, X. L.; Tu, J. P. Large-scale synthesis of high-quality lithium-graphite hybrid anodes for mass-controllable and cycling-stable lithium metal batteries. Energy Storage Mater. 2018, 15, 31–36.

26

Jiang, Z. G.; Liu, T. F.; Yan, L. J.; Liu, J.; Dong, F. F.; Ling, M.; Liang, C. D.; Lin, Z. Metal-organic framework nanosheets-guided uniform lithium deposition for metallic lithium batteries. Energy Storage Mater. 2018, 11, 267–273.

27

Huang, J. Q.; Zhai, P. Y.; Peng, H. J.; Zhu, W. C.; Zhang, Q. Metal/ nanocarbon layer current collectors enhanced energy efficiency in lithium-sulfur batteries. Sci. Bull. 2017, 62, 1267–1274.

28

Yan, C.; Yao, Y. X.; Chen, X.; Cheng, X. B.; Zhang, X. Q.; Huang, J. Q.; Zhang, Q. Lithium nitrate solvation chemistry in carbonate electrolyte sustains high-voltage lithium metal batteries. Angew. Chem. , Int. Ed. 2018, 57, 14055–14059.

29

Zhang, X. Q.; Chen, X.; Cheng, X. B.; Li, B. Q.; Shen, X.; Yan, C.; Huang, J. Q.; Zhang, Q. Highly stable lithium metal batteries enabled by regulating the solvation of lithium ions in nonaqueous electrolytes. Angew. Chem. , Int. Ed. 2018, 57, 5301–5305.

30

Zhao, Q.; Tu, Z. Y.; Wei, S. Y.; Zhang, K. H.; Choudhury, S.; Liu, X. T.; Archer, L. A. Building organic/inorganic hybrid interphases for fast interfacial transport in rechargeable metal batteries. Angew. Chem. , Int. Ed. 2018, 57, 992–996.

31

Lu, Y.; Huang, X.; Song, Z.; Rui, K.; Wang, Q. S.; Gu, S.; Yang, J. H.; Xiu, T. P.; Badding, M. E.; Wen, Z. Y. Highly stable garnet solid electrolyte based Li–S battery with modified anodic and cathodic interfaces. Energy Storage Mater. 2018, 15, 282–290.

32

Yang, C. P.; Liu, B. Y.; Jiang, F.; Zhang, Y.; Xie, H.; Hitz, E.; Hu, L. B. Garnet/polymer hybrid ion-conducting protective layer for stable lithium metal anode. Nano Res. 2017, 10, 4256–4265.

33

He, Y. T.; Zhang, Y. H.; Li, X. F.; Lv, Z.; Wang, X. J.; Liu, Z. G.; Huang, X. Q. A novel ZnO-based inorganic/organic bilayer with low resistance for Li metal protection. Energy Storage Mater. 2018, 14, 392–401.

34

Zhao, Y.; Goncharova, L. V.; Sun, Q.; Li, X.; Lushington, A.; Wang, B. Q.; Li, R. Y.; Dai, F.; Cai, M.; Sun, X. L. Robust metallic lithium anode protection by the molecular-layer-deposition technique. Small Methods 2018, 2, 1700417.

35

Gao, Y.; Zhao, Y. M.; Li, Y. C.; Huang, Q. Q.; Mallouk, T. E.; Wang, D. H. Interfacial chemistry regulation via a skin-grafting strategy enables high-performance lithium-metal batteries. J. Am. Chem. Soc. 2017, 139, 15288–15291.

36

Luo, J.; Fang, C. C.; Wu, N. L. High polarity poly(vinylidene difluoride) thin coating for dendrite-free and high-performance lithium metal anodes. Adv. Energy Mater. 2018, 8, 1701482.

37

Cha, E.; Patel, M. D.; Park, J.; Hwang, J.; Prasad, V.; Cho, K.; Choi, W. 2D MoS2 as an efficient protective layer for lithium metal anodes in high-performance Li–S batteries. Nat. Nanotechnol. 2018, 13, 337–344.

38

Liu, F.; Xiao, Q. F.; Wu, H. B.; Shen, L.; Xu, D.; Cai, M.; Lu, Y. F. Fabrication of hybrid silicate coatings by a simple vapor deposition method for lithium metal anodes. Adv. Energy Mater. 2018, 8, 1701744.

39

Xu, R.; Zhang, X. Q.; Cheng, X. B.; Peng, H. J.; Zhao, C. Z.; Yan, C.; Huang, J. Q. Artificial soft-rigid protective layer for dendrite-free lithium metal anode. Adv. Funct. Mater. 2018, 28, 1705838.

40

Liu, Y. Y.; Lin, D. C.; Yuen, P. Y.; Liu, K.; Xie, J.; Dauskardt, R. H.; Cui, Y. An artificial solid electrolyte interphase with high Li-ion conductivity, mechanical strength, and flexibility for stable lithium metal anodes. Adv. Mater. 2017, 29, 1605531.

41

Kim, M. S.; Ryu, J. H.; Deepika; Lim, Y. R.; Nah, I. W.; Lee, K. R.; Archer, L. A.; Cho, W. I. Langmuir–blodgett artificial solid-electrolyte interphases for practical lithium metal batteries. Nat. Energy 2018, 3, 889–898.

42

Yan, K.; Lee, H. W.; Gao, T.; Zheng, G. Y.; Yao, H. B.; Wang, H. T.; Lu, Z. D.; Zhou, Y.; Liang, Z.; Liu, Z. F. et al. Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode. Nano Lett. 2014, 14, 6016–6022.

43

Zhang, S. S.; Fan, X. L.; Wang, C. S. Efficient and stable cycling of lithium metal enabled by a conductive carbon primer layer. Sustain. Energy Fuels 2018, 2, 163–168.

44

Lin, D. C.; Liu, Y. Y.; Liang, Z.; Lee, H. W.; Sun, J.; Wang, H. T.; Yan, K.; Xie, J.; Cui, Y. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nat. Nanotechnol. 2016, 11, 626–632.

45

Zhang, R.; Chen, X. R.; Chen, X.; Cheng, X. B.; Zhang, X. Q.; Yan, C.; Zhang, Q. Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes. Angew. Chem. , Int. Ed. 2017, 56, 7764–7768.

46

Huang, S. Y.; Tang, L.; Najafabadi, H. S.; Chen, S.; Ren, Z. F. A highly flexible semi-tubular carbon film for stable lithium metal anodes in high- performance batteries. Nano Energy 2017, 38, 504–509.

47

Dong, Q. Y.; Hong, B.; Fan, H. L.; Gao, C. H.; Hong, S.; Lai, Y. Q. Electron-rich functional doping carbon host as dendrite-free lithium metal anode. Electrochim. Acta 2018, 284, 376–381.

48

Zhao, Y.; Sun, Q.; Li, X.; Wang, C. H.; Sun, Y. P.; Adair, K. R.; Li, R. Y.; Sun, X. L. Carbon paper interlayers: A universal and effective approach for highly stable Li metal anodes. Nano Energy 2018, 43, 368–375.

49

Zheng, G. Y.; Lee, S. W.; Liang, Z.; Lee, H. W.; Yan, K.; Yao, H. B.; Wang, H. T.; Li, W. Y.; Chu, S.; Cui, Y. Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotechnol. 2014, 9, 618–623.

50

Liu, Y. Y.; Tzeng, Y. K.; Lin, D. C.; Pei, A.; Lu, H. Y.; Melosh, N. A.; Shen, Z. X.; Chu, S.; Cui, Y. An ultrastrong double-layer nanodiamond interface for stable lithium metal anodes. Joule 2018, 2, 1595–1609.

51

Hong, B.; Fan, H. L.; Cheng, X. B.; Yan, X. L.; Hong, S.; Dong, Q. Y.; Gao, C. H.; Zhang, Z. A.; Lai, Y. Q.; Zhang, Q. Spatially uniform deposition of lithium metal in 3D Janus hosts. Energy Storage Mater. 2019, 16, 259–266.

52

Oakes, L.; Hanken, T.; Carter, R.; Yates, W.; Pint, C. L. Roll-to-roll nanomanufacturing of hybrid nanostructures for energy storage device design. ACS Appl. Mater. Interfaces 2015, 7, 14201–14210.

53

Shi, F. F.; Pei, A.; Boyle, D. T.; Xie, J.; Yu, X. Y.; Zhang, X. K.; Cui, Y. Lithium metal stripping beneath the solid electrolyte interphase. Proc. Natl. Acad. Sci. USA 2018, 115, 8529–8534.

54

Li, N. W.; Shi, Y.; Yin, Y. X.; Zeng, X. X.; Li, J. Y.; Li, C. J.; Wan, L. J.; Wen, R.; Guo, Y. G. A flexible solid electrolyte interphase layer for long-life lithium metal anodes. Angew. Chem. , Int. Ed. 2018, 57, 1505– 1509.

55

Yan, C.; Cheng, X. B.; Yao, Y. X.; Shen, X.; Li, B. Q.; Li, W. J.; Zhang, R.; Huang, J. Q.; Li, H.; Zhang, Q. An armored mixed conductor interphase on a dendrite-free lithium-metal anode. Adv. Mater. 2018, 30, 1804461.

56

Cheng, X. B.; Yan, C.; Chen, X.; Guan, C.; Huang, J. Q.; Peng, H. J.; Zhang, R.; Yang, S. T.; Zhang, Q. Implantable solid electrolyte interphase in lithium-metal batteries. Chem 2017, 2, 258–270.

57

Liao, K. M.; Wu, S. C.; Mu, X. W.; Lu, Q.; Han, M.; He, P.; Shao, Z. P.; Zhou, H. S. Developing a "water-defendable" and "dendrite-free" lithium- metal anode using a simple and promising GeCl4 pretreatment method. Adv. Mater. 2018, 30, 1705711.

58

Chen, S. R.; Zheng, J. M.; Yu, L.; Ren, X. D.; Engelhard, M. H.; Niu, C. J.; Lee, H.; Xu, W.; Xiao, J.; Liu, J. et al. High-efficiency lithium metal batteries with fire-retardant electrolytes. Joule 2018, 2, 1548–1558.

59

Liu, F. Q.; Wang, W. P.; Yin, Y. X.; Zhang, S. F.; Shi, J. L.; Wang, L.; Zhang, X. D.; Zheng, Y.; Zhou, J. J.; Li, L. et al. Upgrading traditional liquid electrolyte via in situ gelation for future lithium metal batteries. Sci. Adv. 2018, 4, eaat5383.

60

Liang, J. W.; Li, X. N.; Zhao, Y.; Goncharova, L. V.; Wang, G. M.; Adair, K. R.; Wang, C. H.; Li, R. Y.; Zhu, Y. C.; Qian, Y. T. et al. In situ Li3PS4 solid-state electrolyte protection layers for superior long-life and high-rate lithium-metal anodes. Adv. Mater. 2018, 30, 1804684.

61

Wang, A. X.; Zhang, X. Y.; Yang, Y. W.; Huang, J. X.; Liu, X. J.; Luo, J. Y. Horizontal centripetal plating in the patterned voids of Li/graphene composites for stable lithium-metal anodes. Chem 2018, 4, 2192–2200.

62

Liu, S. F.; Xia, X. H.; Zhong, Y.; Deng, S. J.; Yao, Z. J.; Zhang, L. Y.; Cheng, X. B.; Wang, X. L.; Zhang, Q.; Tu, J. P. 3D TiC/C core/shell nanowire skeleton for dendrite-free and long-life lithium metal anode. Adv. Energy Mater. 2018, 8, 1702322.

63

Zhang, W. D.; Zhuang, H. L.; Fan, L.; Gao, L. N.; Lu, Y. Y. A "cation- anion regulation" synergistic anode host for dendrite-free lithium metal batteries. Sci. Adv. 2018, 4, eaar4410.

Nano Research
Pages 2224-2229
Cite this article:
Li T, Shi P, Zhang R, et al. Dendrite-free sandwiched ultrathin lithium metal anode with even lithium plating and stripping behavior. Nano Research, 2019, 12(9): 2224-2229. https://doi.org/10.1007/s12274-019-2368-x
Topics:
Part of a topical collection:

898

Views

39

Crossref

N/A

Web of Science

43

Scopus

16

CSCD

Altmetrics

Received: 31 December 2018
Revised: 13 February 2019
Accepted: 04 March 2019
Published: 26 March 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return