AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Post-synthesis phase and shape evolution of CsPbBr3 colloidal nanocrystals: The role of ligands

Elisabetta Fanizza1,2,§( )Francesca Cascella1,,§Davide Altamura3Cinzia Giannini3Annamaria Panniello2Leonardo Triggiani1,2Francesca Panzarea1Nicoletta Depalo2Roberto Grisorio4,5Gian Paolo Suranna4,5Angela Agostiano1,2M. Lucia Curri1,2Marinella Striccoli2( )
Dipartimento di Chimica,Università degli Studi di Bari "A. Moro",Via Orabona 4,70126,Bari, Italy;
CNR-Istituto per i Processi Chimico Fisici,S. S. Bari,Via Orabona, 4,70126,Bari, Italy;
CNR-Istituto di Cristallografia,Via Amendola, 122/O,70126,Bari, Italy;
Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica (DICATECh),Politecnico di Bari,Via Orabona 4,70125,Italy;
,CNR-NANOTEC-Istituto di Nanotecnologia,Via Monteroni,73100,Lecce, Italy;

§ Elisabetta Fanizza and Francesca Cascella contributed equally to this work.

Present Address: Max Planck Institute for Dynamics of Complex Technical Systems, Physical and Chemical Foundations of Process Engineering, Sandtorstr.1, D-39106 Magdeburg, Germany

Show Author Information

Graphical Abstract

Abstract

The surface chemistry of colloidal cesium lead bromide (CsPbBr3) nanocrystals is decisive in determining the stability and the final morphology of this class of materials, characterized by ionic structure and a high defect tolerance factor. Here, the high sensitivity of purified colloidal nanocubes of CsPbBr3 to diverse environmental condition (solvent dilution, ageing, ligands post synthetic treatment) in ambient atmosphere is investigated by means of a comprehensive morphological (electron microscopy), structural (θ/2θ X-ray diffraction (XRD) and grazing incidence wide angle scattering (GIWAXS)), and spectroscopic chemical (1H nuclear magnetic resonance (NMR), nuclear Overhauser effect spectroscopy (NOESY), absorption and emission spectroscopy) characterization. The aging and solvent dilution contribute to modify the nanocrystal morphology, due to a modification of the ligand dynamic. Moreover, we establish the ability of aliphatic carboxylic acids and alkyl amines ligands to induce, even in a post preparative process at room temperature, structural, morphological and spectroscopic variations. Upon post synthesis alkyl amine addition, in particular of oleyl amine and octyl amine, the highly green emitting CsPbBr3 nanocubes effectively turn into one-dimensional (1D) thin tetragonal nanowires or lead halide deficient rhombohedral zero-dimensional (0D) Cs4PbBr6 structures with a complete loss of fluorescence. The addition of an alkyl carboxylic acid, as oleic and nonanoic acid, produces the transformation of nanocubes into still emitting orthorombic two-dimensional (2D) nanoplates. The acid/base equilibrium between the native and added ligands, the adsorbed/free ligands dynamic in solution and the ligand solubility in non-polar solvent contribute to render CsPbBr3 particularly sensitive to environmental and processing conditions and, therefore prone to undergo to structural, morphological and, hence spectroscopic, transformations.

Electronic Supplementary Material

Download File(s)
12274_2019_2371_MOESM1_ESM.pdf (2.3 MB)

References

1

Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel opto-electronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692-3696.

2

Ha, S. T.; Su, R.; Xing, J.; Zhang, Q.; Xiong, Q. H. Metal halide perovskite nanomaterials: Synthesis and applications. Chem. Sci. 2017, 8, 2522-2536.

3

Kovalenko, M. V.; Protesescu, L.; Bodnarchuk, M. I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science 2017, 358, 745-750.

4

Huang, H.; Bodnarchuk, M. I.; Kershaw, S. V.; Kovalenko, M. V.; Rogach, A. L. Lead halide perovskite nanocrystals in the research spotlight: Stability and defect tolerance. ACS Energy Lett. 2017, 2, 2071-2083.

5

Liu, Q. H.; Wang, Y. H.; Sui, N.; Wang, Y. T.; Chi, X. C.; Wang, Q. Q.; Chen, Y.; Ji, W. Y.; Zou, L.; Zhang, H. Z. Exciton relaxation dynamics in photo-excited CsPbI3 perovskite nanocrystals. Sci. Rep. 2016, 6, 29442.

6

Liao, J. F.; Li, W. G.; Rao, H. S.; Chen, B. X.; Wang, X. D.; Chen, H. Y.; Kuang, D. B. Inorganic cesium lead halide CsPbX3 nanowires for long-term stable solar cells. Sci. China Mater. 2017, 60, 285-294.

7

Li, B.; Zhang, Y. N.; Fu, L.; Yu, T.; Zhou, S. J.; Zhang, L. Y.; Yin, L. W. Surface passivation engineering strategy to fully-inorganic cubic CsPbI3 perovskites for high-performance solar cells. Nat. Commun. 2018, 9, 1076.

8

Zhang, D. D.; Yu, Y.; Bekenstein, Y.; Wong, A. B.; Alivisatos, A. P.; Yang, P. D. Ultrathin colloidal cesium lead halide perovskite nanowires. J. Am. Chem. Soc. 2016, 138, 13155-13158.

9

Kim, Y.; Yassitepe, E.; Voznyy, O.; Comin, R.; Walters, G.; Gong, X. W.; Kanjanaboos, P.; Nogueira, A. F.; Sargent, E. H. Efficient luminescence from perovskite quantum dot solids. ACS Appl. Mater. Interfaces 2015, 7, 25007-25013.

10

Reichardt, C. Solvents and Solvent Effects in Organic Chemistry; 3rd ed. Wiley-VCH: Weinheim, Germany, 2003.

11

De Roo, J.; Ibáñez, M.; Geiregat, P.; Nedelcu, G.; Walravens, W.; Maes, J.; Martins, J. C.; Van Driessche, I.; Kovalenko, M. V.; Hens, Z. Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals. ACS Nano 2016, 10, 2071-2081.

12

Udayabhaskararao, T.; Kazes, M.; Houben, L.; Lin, H.; Oron, D. Nucleation, growth, and structural transformations of perovskite nanocrystals. Chem. Mater. 2017, 29, 1302-1308.

13

Cho, J.; Jin, H.; Sellers, D. G.; Watson, D. F.; Son, D. H.; Banerjee, S. Influence of ligand shell ordering on dimensional confinement of cesium lead bromide (CsPbBr3) perovskite nanoplatelets. J. Mater. Chem. C 2017, 5, 8810-8818.

14

Almeida, G.; Goldoni, L.; Akkerman, Q.; Dang, Z. Y.; Khan, A. H.; Marras, S.; Moreels, I.; Manna, L. Role of acid-base equilibria in the size, shape, and phase control of cesium lead bromide nanocrystals. ACS Nano 2018, 12, 1704-1711.

15

Pan, A. Z.; He, B.; Fan, X. Y.; Liu, Z. K.; Urban, J. J.; Alivisatos, A. P.; He, L.; Liu, Y. Insight into the ligand-mediated synthesis of colloidal CsPbBr3 perovskite nanocrystals: The role of organic acid, base, and cesium precursors. ACS Nano 2016, 10, 7943-7954.

16

Liang, Z. Q.; Zhao, S. L.; Xu, Z.; Qiao, B.; Song, P. J.; Gao, D.; Xu, X. R. Shape-controlled synthesis of all-inorganic CsPbBr3 perovskite nanocrystals with bright blue emission. ACS Appl. Mater. Interfaces 2016, 8, 28824-28830.

17

Shamsi, J.; Dang, Z. Y.; Bianchini, P.; Canale, C.; Di Stasio, F.; Brescia, R.; Prato, M.; Manna, L. Colloidal synthesis of quantum confined single crystal CsPbBr3 nanosheets with lateral size control up to the micrometer range. J. Am. Chem. Soc. 2016, 138, 7240-7243.

18

Lignos, I.; Protesescu, L.; Emiroglu, D. B.; Maceiczyk, R.; Schneider, S.; Kovalenko, M. V.; deMello, A. J. Unveiling the shape evolution and halide-ion-segregation in blue-emitting formamidinium lead halide perovskite nanocrystals using an automated microfluidic platform. Nano Lett. 2018, 18, 1246-1252.

19

Goodwin, C. A. P.; Reta, D.; Ortu, F.; Chilton, N. F.; Mills, D. P. Synthesis and electronic structures of heavy lanthanide metallocenium cations. J. Am. Chem. Soc. 2017, 139, 18714-18724.

20

Zhang, D. D.; Eaton, S. W.; Yu, Y.; Dou, L. T.; Yang, P. D. Solution-phase synthesis of cesium lead halide perovskite nanowires. J. Am. Chem. Soc. 2015, 137, 9230-9233.

21

Akkerman, Q. A.; Motti, S. G.; Srimath Kandada, A. R.; Mosconi, E.; D'Innocenzo, V.; Bertoni, G.; Marras, S.; Kamino, B. A.; Miranda, L.; De Angelis, F. et al. Solution synthesis approach to colloidal cesium lead halide perovskite nanoplatelets with monolayer-level thickness control. J. Am. Chem. Soc. 2016, 138, 1010-1016.

22

Seth, S.; Samanta, A. A facile methodology for engineering the morphology of CsPbX3 perovskite nanocrystals under ambient condition. Sci. Rep. 2016, 6, 37693.

23

Sun, S. B.; Yuan, D.; Xu, Y.; Wang, A. F.; Deng, Z. T. Ligand-mediated synthesis of shape-controlled cesium lead halide perovskite nanocrystals via reprecipitation process at room temperature. ACS Nano 2016, 10, 3648-3657.

24

Li, X. M.; Wu, Y.; Zhang, S. L.; Cai, B.; Gu, Y.; Song, J. Z.; Zeng, H. B. CsPbX3 quantum dots for lighting and displays: Room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv. Funct. Mater. 2016, 26, 2435-2445.

25

Ramasamy, P.; Lim, D. H.; Kim, B.; Lee, S. H.; Lee, M. S.; Lee, J. S. All-inorganic cesium lead halide perovskite nanocrystals for photodetector applications. Chem. Commun. 2016, 52, 2067-2070.

26

Doane, T. L.; Ryan, K. L.; Pathade, L.; Cruz, K. J.; Zang, H. D.; Cotlet, M.; Maye, M. M. Using perovskite nanoparticles as halide reservoirs in catalysis and as spectrochemical probes of ions in solution. ACS Nano 2016, 10, 5864-5872.

27

Krieg, F.; Ochsenbein, S. T.; Yakunin, S.; Ten Brinck, S.; Aellen, P.; Süess, A.; Clerc, B.; Guggisberg, D.; Nazarenko, O.; Shynkarenko, Y. et al. Colloidal CsPbX3 (X = Cl, Br, I) nanocrystals 2.0: Zwitterionic capping ligands for improved durability and stability. ACS Energy Lett. 2018, 3, 641-646.

28

Swarnkar, A.; Marshall, A. R.; Sanehira, E. M.; Chernomordik, B. D.; Moore, D. T.; Christians, J. A.; Chakrabarti, T.; Luther, J. M. Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science 2016, 354, 92-95.

29

Akkerman, Q. A.; Abdelhady, A. L.; Manna, L. Zero-dimensional cesium lead halides: History, properties, and challenges. J. Phys. Chem. Lett. 2018, 9, 2326-2337.

30

Palazon, F.; Almeida, G.; Akkerman, Q. A.; De Trizio, L.; Dang, Z. Y.; Prato, M.; Manna, L. Changing the dimensionality of cesium lead bromide nano-crystals by reversible postsynthesis transformations with amines. Chem. Mater. 2017, 29, 4167-4171.

31

Akkerman, Q. A.; Park, S.; Radicchi, E.; Nunzi, F.; Mosconi, E.; De Angelis, F.; Brescia, R.; Rastogi, P.; Prato, M.; Manna, L. Nearly monodisperse insulator Cs4PbX6 (X = Cl, Br, I) nanocrystals, their mixed halide compositions, and their transformation into CsPbX3 nanocrystals. Nano Lett. 2017, 17, 1924-1930.

32

Liu, Z. K.; Bekenstein, Y.; Ye, X. C.; Nguyen, S. C.; Swabeck, J.; Zhang, D. D.; Lee, S. T.; Yang, P. D.; Ma, W. L.; Alivisatos, A. P. Ligand mediated transformation of cesium lead bromide perovskite nanocrystals to lead depleted Cs4PbBr6 nanocrystals. J. Am. Chem. Soc. 2017, 139, 5309-5312.

33

Udayabhaskararao, T.; Houben, L.; Cohen, H.; Menahem, M.; Pinkas, I.; Avram, L.; Wolf, T.; Teitelboim, A.; Leskes, M.; Yaffe, O. et al. A mechanistic study of phase transformation in perovskite nanocrystals driven by ligand passivation. Chem. Mater. 2018, 30, 84-93.

34

De Weerd, C.; Lin, J. B.; Gomez, L.; Fujiwara, Y.; Suenaga, K.; Gregorkiewicz, T. Hybridization of single nanocrystals of Cs4PbBr6 and CsPbBr3. J. Phys. Chem. C 2017, 121, 19490-19496.

35

Zhu, H. M.; Trinh, M. T; Wang, J.; Fu, Y. P.; Joshi, P. P.; Miyata, K.; Jin, S.; Zhu, X. Y. Organic cations might not be essential to the remarkable properties of band edge carriers in lead halide perovskites. Adv. Mater. 2017, 29, 1603072.

36

Eperon, G. E.; Ginger, D. S. B-Site metal cation exchange in halide perovskites. ACS Energy Lett. 2017, 2, 1190-1196.

37

Maes, J.; Balcaen, L.; Drijvers, E.; Zhao, Q.; De Roo, J.; Vantomme, A.; Vanhaecke, F.; Geiregat, P.; Hens, Z. Light absorption coefficient of CsPbBr3 perovskite nanocrystals. J. Phys. Chem. Lett. 2018, 9, 3093-3097.

38

Bekenstein, Y.; Koscher, B. A.; Eaton, S. W.; Yang, P. D.; Alivisatos, A. P. Highly luminescent colloidal nanoplates of perovskite cesium lead halide and their oriented assemblies. J. Am. Chem. Soc. 2015, 137, 16008-16011.

39

Di Stasio, F.; Imran, M.; Akkerman, Q. A.; Prato, M.; Manna, L.; Krahne, R. Reversible concentration-dependent photoluminescence quenching and change of emission color in CsPbBr3 nanowires and nanoplatelets. J. Phys. Chem. Lett. 2017, 8, 2725-2729.

40

Lv, L. F.; Xu, Y. B.; Fang, H. H.; Luo, W. J.; Xu, F. J.; Liu, L. M.; Wang, B. W.; Zhang, X. F.; Yang, D.; Hu, W. D. et al. Generalized colloidal synthesis of high-quality, two-dimensional cesium lead halide perovskite nanosheets and their applications in photodetectors. Nanoscale 2016, 8, 13589-13596.

41

Palazon, F.; Urso, C.; De Trizio, L.; Akkerman, Q.; Marras, S.; Locardi, F.; Nelli, I.; Ferretti, M.; Prato, M.; Manna, L. Postsynthesis transformation of insulating Cs4PbBr6 nanocrystals into bright perovskite CsPbBr3 through physical and chemical extraction of CsBr. ACS Energy Lett. 2017, 2, 2445-2448.

42

Imran, M.; Di Stasio, F.; Dang, Z. Y.; Canale, C.; Khan, A. H.; Shamsi, J.; Brescia, R.; Prato, M.; Manna, L. Colloidal synthesis of strongly fluorescent CsPbBr3 nanowires with width tunable down to the quantum confinement regime. Chem. Mater. 2016, 28, 6450-6454.

43

Tong, Y.; Ehrat, F.; Vanderlinden, W.; Cardenas-Daw, C.; Stolarczyk, J. K.; Polavarapu, L.; Urban, A. S. Dilution-induced formation of hybrid perovskite nanoplatelets. ACS Nano 2016, 10, 10936-10944.

44

Sichert, J. A.; Tong, Y.; Mutz, N.; Vollmer, M.; Fischer, S.; Milowska, K. Z.; García Cortadella, R.; Nickel, B.; Cardenas-Daw, C.; Stolarczyk, J. K. et al. Quantum size effect in organometal halide perovskite nanoplatelets. Nano Lett. 2015, 15, 6521-6527.

45

Ravi, V. K.; Swarnkar, A.; Chakraborty, R.; Nag, A. Excellent green but less impressive blue luminescence from CsPbBr3 perovskite nanocubes and nanoplatelets. Nanotechnology 2016, 27, 325708.

46

De Weerd, C.; Gomez, L.; Zhang, H.; Buma, W. J.; Nedelcu, G.; Kovalenko, M. V.; Gregorkiewicz, T. Energy transfer between inorganic perovskite nanocrystals. J. Phys. Chem. C 2016, 120, 13310-13315.

47

Cottingham, P.; Brutchey, R. L. On the crystal structure of colloidally prepared CsPbBr3 quantum dots. Chem. Commun. 2016, 52, 5246-5249.

48

Grisorio, R.; Di Clemente, M. E.; Fanizza, E.; Allegretta, I.; Altamura, D.; Striccoli, M.; Terzano, R.; Giannini, C.; Irimia-Vladu, M.; Suranna, G. P. Exploring the surface chemistry of cesium lead halide perovskite nanocrystals. Nanoscale 2019, 11, 986-999.

49

Protesescu, L.; Yakunin, S.; Nazarenko, O.; Dirin, D. N.; Kovalenko, M. V. Low-cost synthesis of highly luminescent colloidal lead halide perovskite nanocrystals by wet ball milling. ACS Appl. Nano Mater. 2018, 1, 1300-1308.

50

Ravi, V. K.; Santra, P. K.; Joshi, N.; Chugh, J.; Singh, S. K.; Rensmo, H.; Ghosh, P.; Nag, A. Origin of the substitution mechanism for the binding of organic ligands on the surface of CsPbBr3 perovskite nanocubes. J. Phys. Chem. Lett. 2017, 8, 4988-4994.

51

Boix, P. P.; Agarwala, S.; Koh, T. M.; Mathews, N.; Mhaisalkar, S. G. Perovskite solar cells: Beyond methylammonium lead iodide. J. Phys. Chem. Lett. 2015, 6, 898-907.

Nano Research
Pages 1155-1166
Cite this article:
Fanizza E, Cascella F, Altamura D, et al. Post-synthesis phase and shape evolution of CsPbBr3 colloidal nanocrystals: The role of ligands. Nano Research, 2019, 12(5): 1155-1166. https://doi.org/10.1007/s12274-019-2371-2
Topics:

954

Views

52

Crossref

N/A

Web of Science

53

Scopus

0

CSCD

Altmetrics

Received: 15 October 2018
Revised: 25 February 2019
Accepted: 05 March 2019
Published: 02 April 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return