Graphical Abstract
![](https://wqketang.oss-cn-beijing.aliyuncs.com/zip-unzip/zip-86ab13b6-2882-474d-88c7-804fd70544b5/nr-12-5-1167/files/nr-12-5-1167-FE1.jpg?Expires=1739900238&OSSAccessKeyId=STS.NT8s3bmaQBP6zGRZKkCGRQesA&Signature=gTeZuFerw9ZbSHiU4aiKk5FjTjY%3D&security-token=CAISywJ1q6Ft5B2yfSjIr5eNOInWgL5w9ZLdeGHjvks%2BT8h%2BvqDYozz2IHtKenhsBOsbtfk1mG5W5%2FgZlqJ9SptIAEfJa9d99MzGUogt2tCT1fau5Jko1beHewHKeTOZsebWZ%2BLmNqC%2FHt6md1HDkAJq3LL%2Bbk%2FMdle5MJqP%2B%2FUFB5ZtKWveVzddA8pMLQZPsdITMWCrVcygKRn3mGHdfiEK00he8TouufTinpHMskGA1Aell7Mvyt6vcsT%2BXa5FJ4xiVtq55utye5fa3TRYgxowr%2Fwo0v0YpGya5YzHXwcPskvdKZbo78UqLQlla6w%2BGqFJqvPxr%2Fp8t%2Fx5fWJKAezhVgs8cVM8JOjIqKOscIsipkcvx1sYFV55c8Fdm%2BgUooJVgIMhTnduUfAPJAGOxzJitP%2BUVGGphr60TEnBL4rB5MUctfzRp1DX%2FGXUTzDnGoABrMeg5Iz4UYMijLcD7MBGLIBlxlnahc%2BdmiQ%2BoMXo3120n1xxIIwHREYrx6NlNdpPPSTW2lbF9p0q976k%2BQLEXDCPAY039omq3Ma6ySaDj%2B1364%2FC7v5YacVHdHPm0Sk6AZjD%2FqBxoJ4Yxd0QTwWSjTh0rAJAr5rDTwXMR9J9sjggAA%3D%3D)
The application of nickel in electrocatalytic reduction of CO2 has been largely restricted by side reaction (hydrogen evolution reaction) and catalyst poisoning. Here we report a new strategy to improve the electrocatalytic performance of nickel for CO2 reduction by employing a nitrogen-carbon layer for nickel nanoparticles. Such a nickel electrocatalyst exhibits high Faradaic efficiency 97.5% at relatively low potential of −0.61 V for the conversion of CO2 to CO. Density functional theory calculation reveals that it is thermodynamically accomplishable for the reduction product CO to be removed from the catalyst surface, thus avoiding catalyst poisoning. Also, the catalyst renders hydrogen evolution reaction to be suppressed and hence reasonably improves catalytic performance.
Li, N.; Chen, X. Z.; Ong, W. J.; MacFarlane, D. R.; Zhao, X. J.; Cheetham, A. K.; Sun, C. H. Understanding of electrochemical mechanisms for CO2 capture and conversion into hydrocarbon fuels in transition-metal carbides (MXenes). ACS Nano 2017, 11, 10825-10833.
Lu, L.; Sun, X. F.; Ma, J.; Yang, D. X.; Wu, H. H.; Zhang, B. X.; Zhang, J. L.; Han, B. X. Highly efficient electroreduction of CO2 to methanol on palladium-copper bimetallic aerogels. Angew. Chem. , Int. Ed. 2018, 57, 14149-14153.
Sun, X. F.; Lu, L.; Zhu, Q. G.; Wu, C. Y.; Yang, D. X.; Chen, C. J.; Han, B. X. MoP nanoparticles supported on indium-doped porous carbon: Outstanding catalysts for highly efficient CO2 electroreduction. Angew. Chem. , Int. Ed. 2018, 57, 2427-2431.
Lau, G. P. S.; Schreier, M.; Vasilyev, D.; Scopelliti, R.; Grätzel, M.; Dyson, P. J. New insights into the role of imidazolium-based promoters for the electroreduction of CO2 on a silver electrode. J. Am. Chem. Soc. 2016, 138, 7820-7823.
Li, C. W.; Ciston, J.; Kanan, M. W. Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature 2014, 508, 504-507.
Yang, H. B.; Hung, S. F.; Liu, S.; Yuan, K. D.; Miao, S.; Zhang, L. P.; Huang, X.; Wang, H. Y.; Cai, W. Z.; Chen, R. et al. Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction. Nat. Energy 2018, 3, 140-147.
Lv, K. L.; Teng, C.; Shi, M. H.; Yuan, Y.; Zhu, Y.; Wang, J. R.; Kong, Z.; Lu, X. Y.; Zhu, Y. Hydrophobic and electronic properties of the E-MoS2 nanosheets induced by FAS for the CO2 electroreduction to syngas with a wide range of CO/H2 ratios. Adv. Funct. Mater. 2018, 28, 1802339.
Xu, J. Q.; Li, X. D.; Liu, W.; Sun, Y. F.; Ju, Z. Y.; Yao, T.; Wang, C. M.; Ju, H. X.; Zhu, J. F.; Wei, S. Q. et al. Carbon dioxide electroreduction into syngas boosted by a partially delocalized charge in molybdenum sulfide selenide alloy monolayers. Angew. Chem. , Int. Ed. 2017, 56, 9121-9125.
Zhao, Y.; Wang, C. Y.; Liu, Y. Q.; MacFarlane, D. R.; Wallace, G. G. Engineering surface amine modifiers of ultrasmall gold nanoparticles supported on reduced graphene oxide for improved electrochemical CO2 reduction. Adv. Energy Mater. 2018, 8, 1801400.
Chen, D.; Yao, Q. F.; Cui, P. L.; Liu, H.; Xie, J. P.; Yang, J. Tailoring the selectivity of bimetallic copper-palladium nanoalloys for electrocatalytic reduction of CO2 to CO. ACS Appl. Energy Mater. 2018, 1, 883-890.
Li, M.; Wang, J. J.; Li, P.; Chang, K.; Li, C. L.; Wang, T.; Jiang, B.; Zhang, H. B.; Liu, H. M.; Yamauchi, Y. et al. Mesoporous palladium-copper bimetallic electrodes for selective electrocatalytic reduction of aqueous CO2 to CO. J. Mater. Chem. A 2016, 4, 4776-4782.
Sun, K.; Cheng, T.; Wu, L. N.; Hu, Y. F.; Zhou, J. G.; Maclennan, A.; Jiang, Z. H.; Gao, Y. Z.; Goddard Ⅲ, W. A.; Wang, Z. J. Ultrahigh mass activity for carbon dioxide reduction enabled by gold-iron core-shell nanoparticles. J. Am. Chem. Soc. 2017, 139, 15608-15611.
Zhu, W. J.; Zhang, L.; Yang, P. P.; Hu, C. L.; Luo, Z. B.; Chang, X. X.; Zhao, Z. J.; Gong, J. L. Low-coordinated edge sites on ultrathin palladium nanosheets boost carbon dioxide electroreduction performance. Angew. Chem. , Int. Ed. 2018, 57, 11544-11548.
Mistry, H.; Choi, Y. W.; Bagger, A.; Scholten, F.; Bonifacio, C. S.; Sinev, I.; Divins, N. J.; Zegkinoglou, I.; Jeon, H. S.; Kisslinger, K. et al. Enhanced carbon dioxide electroreduction to carbon monoxide over defect-rich plasma-activated silver catalysts. Angew. Chem. , Int. Ed. 2017, 56, 11394-11398.
Ye, Y. F.; Cai, F.; Li, H. B.; Wu, H. H.; Wang, G. X.; Li, Y. S.; Miao, S.; Xie, S. H.; Si, R.; Wang, J. et al. Surface functionalization of ZIF-8 with ammonium ferric citrate toward high exposure of Fe-N active sites for efficient oxygen and carbon dioxide electroreduction. Nano Energy 2017, 38, 281-289.
Li, Q.; Fu, J. J.; Zhu, W. L.; Chen, Z. Z.; Shen, B.; Wu, L. H.; Xi, Z.; Wang, T. Y.; Lu, G.; Zhu, J. J. et al. Tuning Sn-catalysis for electrochemical reduction of CO2 to CO via the core/shell Cu/SnO2 structure. J. Am. Chem. Soc. 2017, 139, 4290-4293.
Luo, W.; Xie, W.; Mutschler, R.; Oveisi, E.; De Gregorio, G. L.; Buonsanti, R.; Züttel, A. Selective and stable electroreduction of CO2 to CO at the copper/indium interface. ACS Catal. 2018, 8, 6571-6581.
Won, D. H.; Shin, H.; Koh, J.; Chung, J.; Lee, H. S.; Kim, H.; Woo, S. I. Highly efficient, selective, and stable CO2 electroreduction on a hexagonal Zn catalyst. Angew. Chem. , Int. Ed. 2016, 55, 9297-9300.
Liu, Z. Y.; Grinter, D. C.; Lustemberg, P. G.; Nguyen-Phan, T. D.; Zhou, Y. H.; Luo, S.; Waluyo, I.; Crumlin, E. J.; Stacchiola, D. J.; Zhou, J. et al. Dry reforming of methane on a highly-active Ni-CeO2 catalyst: Effects of metal-support interactions on C-H bond breaking. Angew. Chem. , Int. Ed. 2016, 55, 7455-7459.
Rabelo-Neto, R. C.; Sales, H. B. E.; Inocêncio, C. V. M.; Varga, E.; Oszko, A.; Erdohelyi, A.; Noronha, F. B.; Mattos, L. V. CO2 reforming of methane over supported LaNiO3 perovskite-type oxides. Appl. Catal. B: Environ. 2018, 221, 349-361.
Wang, Y.; Yao, L.; Wang, Y. N.; Wang, S. H.; Zhao, Q.; Mao, D. H.; Hu, C. W. Low-temperature catalytic CO2 dry reforming of methane on Ni-Si/ ZrO2 catalyst. ACS Catal. 2018, 8, 6495-6506.
Fominykh, K.; Feckl, J. M.; Sicklinger, J.; Döblinger, M.; Böcklein, S.; Ziegler, J.; Peter, L.; Rathousky, J.; Scheidt, E. W.; Bein, T. et al. Ultrasmall dispersible crystalline nickel oxide nanoparticles as high-performance catalysts for electrochemical water splitting. Adv. Funct. Mater. 2014, 24, 3123-3129.
Xu, Y.; Tu, W. G.; Zhang, B. W.; Yin, S. M.; Huang, Y. Z.; Kraft, M.; Xu, R. Nickel nanoparticles encapsulated in few-layer nitrogen-doped graphene derived from metal-organic frameworks as efficient bifunctional electrocatalysts for overall water splitting. Adv. Mater. 2017, 29, 1605957.
Vij, V.; Sultan, S.; Harzandi, A. M.; Meena, A.; Tiwari, J. N.; Lee, W. G.; Yoon, T.; Kim, K. S. Nickel-based electrocatalysts for energy-related appli-cations: Oxygen reduction, oxygen evolution, and hydrogen evolution reactions. ACS Catal. 2017, 7, 7196-7225.
Yan, B.; Krishnamurthy, D.; Hendon, C. H.; Deshpande, S.; Surendranath, Y.; Viswanathan, V. Surface restructuring of nickel sulfide generates optimally coordinated active sites for oxygen reduction catalysis. Joule 2017, 1, 600-612.
Li, B.; Nam, H.; Zhao, J.; Chang, J.; Lingappan, N.; Yao, F.; Lee, T. H.; Lee, Y. H. Nanoreactor of nickel-containing carbon-shells as oxygen reduction catalyst. Adv. Mater. 2017, 29, 1605083.
Vasileff, A.; Xu, C. C.; Jiao, Y.; Zheng, Y.; Qiao, S. Z. Surface and interface engineering in copper-based bimetallic materials for selective CO2 electroreduction. Chem 2018, 4, 1809-1831.
Mistry, H.; Varela, A. S.; Kühl, S.; Strasser, P.; Cuenya, B. R. Nanostructured electrocatalysts with tunable activity and selectivity. Nat. Rev. Mater. 2016, 1, 16009.
Kuhl, K. P.; Hatsukade, T.; Cave, E. R.; Abram, D. N.; Kibsgaard, J.; Jaramillo, T. F. Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. J. Am. Chem. Soc. 2014, 136, 14107-14113.
Peterson, A. A.; Nørskov, J. K. Activity descriptors for CO2 electroreduction to methane on transition-metal catalysts. J. Phys. Chem. Lett. 2012, 3, 251-258.
Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15-50.
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.
Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758-1775.
Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886-17892.
Liu, X. Y.; Wang, X.; Yuan, X. T.; Dong, W. J.; Huang, F. Q. Rational com-position and structural design of in situ grown nickel-based electrocatalysts for efficient water electrolysis. J. Mater. Chem. A 2016, 4, 167-172.
Wang, J. L.; Chen, F. Y.; Jin, Y. C.; Johnston, R. L. Highly active and stable AuNi dendrites as an electrocatalyst for the oxygen reduction reaction in alkaline media. J. Mater. Chem. A 2016, 4, 17828-17837.
Chen, J. Y.; Chen, J.; Li, Y.; Zhou, W. X.; Feng, X. M.; Huang, Q. L.; Zheng, J. G.; Liu, R. Q.; Ma, Y. W.; Huang, W. Enhanced oxidation-resistant Cu-Ni core-shell nanowires: Controllable one-pot synthesis and solution processing to transparent flexible heaters. Nanoscale 2015, 7, 16874-16879.
Wang, S. P.; Wang, J.; Zhu, M. L.; Bao, X. B.; Xiao, B. Y.; Su, D. F.; Li, H. R.; Wang, Y. Molybdenum-carbide-modified nitrogen-doped carbon vesicle encapsulating nickel nanoparticles: A highly efficient, low-cost catalyst for hydrogen evolution reaction. J. Am. Chem. Soc. 2015, 137, 15753-15759.
Ju, W.; Bagger, A.; Hao, G. P.; Varela, A. S.; Sinev, I.; Bon, V.; Cuenya, B. R.; Kaskel, S.; Rossmeisl, J.; Strasser, P. Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2. Nat. Commun. 2017, 8, 944.
Zhao, C. M.; Dai, X. Y.; Yao, T.; Chen, W. X.; Wang, X. Q.; Wang, J.; Yang, J.; Wei, S. Q.; Wu, Y.; Li, Y. D. Ionic exchange of metal-organic frameworks to access single nickel sites for efficient electroreduction of CO2. J. Am. Chem. Soc. 2017, 139, 8078-8081.
Jia, M. W.; Choi, C.; Wu, T. S.; Ma, C.; Kang, P.; Tao, H. C.; Fan, Q.; Hong, S.; Liu, S. Z.; Soo, Y. S. et al. Carbon-supported Ni nanoparticles for efficient CO2 electroreduction. Chem. Sci. 2018, 9, 8775-8780.
Li, X. G.; Bi, W. T.; Chen, M. L.; Sun, Y. X.; Ju, H. X.; Yan, W. S.; Zhu, J. F.; Wu, X. J.; Chu, W. S.; Wu, C. Z. et al. Exclusive Ni-N4 sites realize near-unity CO selectivity for electrochemical CO2 reduction. J. Am. Chem. Soc. 2017, 139, 14889-14892.
Li, C. W.; Kanan, M. W. CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films. J. Am. Chem. Soc. 2012, 134, 7231-7234.
Gao, S.; Lin, Y.; Jiao, X. C.; Sun, Y. F.; Luo, Q. Q.; Zhang, W. H.; Li, D. Q.; Yang, J. L.; Xie, Y. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature 2016, 529, 68-71.
Cao, L.; Raciti, D.; Li, C. Y.; Livi, K. J. T.; Rottmann, P. F.; Hemker, K. J.; Mueller, T.; Wang, C. Mechanistic insights for low-overpotential electro-reduction of CO2 to CO on copper nanowires. ACS Catal. 2017, 7, 8578-8587.