AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Nanoengineering of solid oxide electrochemical cell technologies: An outlook

Juliana CarneiroEranda Nikolla( )
Department of Chemical Engineering and Materials ScienceWayne State UniversityDetroitMI48202USA
Show Author Information

Graphical Abstract

Abstract

High temperature electrochemical energy conversion and storage technologies, such as solid oxide electrochemical cells (SOCs), have emerged as promising alternatives to mitigate environmental issues associated with combustion-based technologies. There has been increased interest for nanoengineering SOC electrodes to enhance their efficiency. A major drive is the necessity for improved electrode kinetics via optimization of electrocatalysts for different key reactions in these devices. In this perspective, we discuss the requirements for SOC electrodes and nanoengineering strategies employed to achieve flexibility in electrode materials. We focus on identifying ways in which these nanoengineered materials foster advancements in the SOC electrocatalytic activity, selectivity, and stability. We conclude by proposing approaches that would lead to more stable electrocatalytic nanostructures with high degree of control over the number and nature of active sites. These nanostructures would enable systematic kinetic studies that could provide an in depth understanding of the reaction mechanisms that govern performance, leading to valuable knowledge for designing optimal electrode materials.

References

1

Liu, S. B.; Liu, Q. X.; Luo, J. L. Highly stable and efficient catalyst with in situ exsolved Fe-Ni alloy nanospheres socketed on an oxygen deficient perovskite for direct CO2 electrolysis. ACS Catal. 2016, 6, 6219-6228.

2

Yi, Y. F.; Rao, A. D.; Brouwer, J.; Samuelsen, G. S. Fuel flexibility study of an integrated 25 kW SOFC reformer system. J. Power Sources 2005, 144, 67-76.

3

Eguchi, K.; Kunisa, Y.; Adachi, K.; Arai, H. Effect of anodic concentration overvoltage on power generation characteristics of solid oxide fuel cells. J. Electrochem. Soc. 1996, 143, 3699-3703.

4

Neagu, D.; Oh, T. S.; Miller, D. N.; Ménard, H.; Bukhari, S. M.; Gamble, S. R.; Gorte, R. J.; Vohs, J. M.; Irvine, J. T. Nano-socketed nickel particles with enhanced coking resistance grown in situ by redox exsolution. Nat. Commun. 2015, 6, 8120.

5

Uchida, H.; Suzuki, S.; Watanabe, M. High performance electrode for medium-temperature solid oxide fuel cells mixed conducting ceria-based anode with highly dispersed Ni electrocatalysts. Electrochem. Solid-State Lett. 2003, 6, A174-A177.

6

Kim, J. S.; Wieder, N. L.; Abraham, A. J.; Cargnello, M.; Fornasiero, P.; Gorte, R. J.; Vohs, J. M. Highly active and thermally stable core-shell catalysts for solid oxide fuel cells. J. Electrochem. Soc. 2011, 158, B596-B600.

7

Jiang, Z. Y.; Xia, C. R.; Chen, F. L. Nano-structured composite cathodes for intermediate-temperature solid oxide fuel cells via an infiltration/impregnation technique. Electrochim. Acta 2010, 55, 3595-3605.

8

Zhan, Z. L.; Bierschenk, D. M.; Cronin, J. S.; Barnett, S. A. A reduced temperature solid oxide fuel cell with nanostructured anodes. Energ. Environ. Sci. 2011, 4, 3951-3954.

9

Shah, M.; Voorhees, P. W.; Barnett, S. A. Time-dependent performance changes in LSCF-infiltrated SOFC cathodes: The role of nano-particle coarsening. Solid State Ionics 2011, 187, 64-67.

10

Wang, W. S.; Gross, M. D.; Vohs, J. M.; Gorte, R. J. The stability of LSF-YSZ electrodes prepared by infiltration. J. Electrochem. Soc. 2007, 154, B439-B445.

11

Liang, F. L.; Chen, J.; Jiang, S. P.; Wang, F. Z.; Chi, B.; Pu, J.; Jian, L. Mn-stabilised microstructure and performance of Pd-impregnated YSZ cathode for intermediate temperature solid oxide fuel cells. Fuel Cells 2009, 9, 636-642.

12

Hauch, A.; Ebbesen, S. D.; Jensen, S. H.; Mogensen, M. Solid oxide electrolysis cells: microstructure and degradation of the Ni/yttria-stabilized zirconia electrode. J. Electrochem. Soc. 2008, 155, B1184-B1193.

13

Zhan, Z. L.; Zhao, L. Electrochemical reduction of CO2 in solid oxide electrolysis cells. J. Power Sources 2010, 195, 7250-7254.

14

Nikolla, E.; Schwank, J. W.; Linic, S. Hydrocarbon steam reforming on Ni alloys at solid oxide fuel cell operating conditions. Catal. Today 2008, 136, 243-248.

15

Nikolla, E.; Schwank, J.; Linic, S. Direct electrochemical oxidation of hydrocarbon fuels on SOFCs: Improved carbon tolerance of Ni alloy anodes. J. Electrochem. Soc. 2009, 156, B1312-B1316.

16

Li, H. X.; Sun, G. H.; Xie, K.; Qi, W. T.; Qin, Q. Q.; Wei, H. S.; Chen, S. G.; Wang, Y.; Zhang, Y.; Wu, Y. C. Chromate cathode decorated with in-situ growth of copper nanocatalyst for high temperature carbon dioxide electrolysis. Int. J. Hydrogen Energy 2014, 39, 20888-20897.

17

Adijanto, L.; Sampath, A.; Yu, A. S.; Cargnello, M.; Fornasiero, P.; Gorte, R. J.; Vohs, J. M. Synthesis and stability of Pd@CeO2 core-shell catalyst films in solid oxide fuel cell anodes. ACS Catal. 2013, 3, 1801-1809.

18

Weber, A.; Sauer, B.; Müller, A. C.; Herbstritt, D.; Ivers-Tiffée, E. Oxidation of H2, CO and methane in SOFCs with Ni/YSZ-cermet anodes. Solid State Ionics 2002, 152-153, 543-550.

19

Shao, Z.; Haile, S. M. A high-performance cathode for the next generation of solid-oxide fuel cells. In Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group. Dusastre, V., Ed.; World Scientific: Hackensack, NJ, 2010; pp 255-258.

20

Graves, C.; Ebbesen, S. D.; Mogensen, M. Co-electrolysis of CO2 and H2O in solid oxide cells: Performance and durability. Solid State Ionics 2011, 192, 398-403.

21

Sánchez-Sánchez, C. M.; Montiel, V.; Tryk, D. A.; Aldaz, A.; Fujishima, A. Electrochemical approaches to alleviation of the problem of carbon dioxide accumulation. Pure Appl. Chem. 2001, 73, 1917-1927.

22

Xie, K.; Zhang, Y. Q.; Meng, G. Y.; Irvine, J. T. S. Direct synthesis of methane from CO2/H2O in an oxygen-ion conducting solid oxide electrolyser. Energy Environ. Sci. 2011, 4, 2218-2222.

23

Iglesia, E. Design, synthesis, and use of cobalt-based Fischer-Tropsch synthesis catalysts. Appl. Catal. A-Gen. 1997, 161, 59-78.

24

Wilhelm, D. J.; Simbeck, D. R.; Karp, A. D.; Dickenson, R. L. Syngas production for gas-to-liquids applications: Technologies, issues and outlook. Fuel Process. Technol. 2001, 71, 139-148.

25

Whipple, D. T.; Kenis, P. J. A. Prospects of CO2 utilization via direct heterogeneous electrochemical reduction. J. Phys. Chem. Lett. 2010, 1, 3451-3458.

26

Oloman, C.; Li, H. Electrochemical processing of carbon dioxide. ChemSusChem 2008, 1, 385-391.

27

Sullivan, B. P.; Krist, K.; Guard, H. E. Electrochemical and Electrocatalytic Reactions of Carbon Dioxide; Elsevier: Amsterdam, 1993.

28

Gattrell, M.; Gupta, N.; Co, A. A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper. J. Electroanal. Chem. 2006, 594, 1-19.

29

Lynch, M. E.; Yang, L.; Qin, W. T.; Choi, J. J.; Liu, M. F.; Blinn, K.; Liu, M. L. Enhancement of La0.6Sr0.4Co0.2Fe0.8O3-δ durability and surface electrocatalytic activity by La0.85Sr0.15MnOδ investigated using a new test electrode platform. Energy Environ. Sci. 2011, 4, 2249-2258.

30

Chen, Y.; Lin, Y.; Zhang, Y. X.; Wang, S. W.; Su, D.; Yang, Z. B.; Han, M. F.; Chen, F. L. Low temperature solid oxide fuel cells with hierarchically porous cathode nano-network. Nano Energy 2014, 8, 25-33.

31

Chen, Y.; Chen, Y.; Ding, D.; Ding, Y.; Choi, Y. M.; Zhang, L.; Yoo, S.; Chen, D. C.; deGlee, B.; Xu, H. et al. A robust and active hybrid catalyst for facile oxygen reduction in solid oxide fuel cells. Energy Environ. Sci. 2017, 10, 964-971.

32

Adler, S. B. Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chem. Rev. 2004, 104, 4791-4844.

33

Gu, X. K.; Samira, S.; Nikolla, E. Oxygen sponges for electrocatalysis: Oxygen reduction/evolution on nonstoichiometric, mixed metal oxides. Chem. Mater. 2018, 30, 2860-2872.

34

Siebert, E.; Hammouche, A.; Kleitz, M. Impedance spectroscopy analysis of La1-xSrxMnO3-yttria-stabilized zirconia electrode kinetics. Electrochim. Acta 1995, 40, 1741-1753.

35

Jørgensen, M. J.; Mogensen, M. Impedance of solid oxide fuel cell LSM/YSZ composite cathodes. J. Electrochem. Soc. 2001, 148, A433-A442.

36

Ingram, D. B.; Linic, S. First-principles analysis of the activity of transition and noble metals in the direct utilization of hydrocarbon fuels at solid oxide fuel cell operating conditions. J. Electrochem. Soc. 2009, 156, B1457-B1465.

37

Gu, X. K.; Nikolla, E. Fundamental insights into high-temperature water electrolysis using Ni-based electrocatalysts. J. Phys. Chem. C 2015, 119, 26980-26988.

38

Cho, A.; Ko, J.; Kim, B. K.; Han, J. W. Electrocatalysts with increased activity for coelectrolysis of steam and carbon dioxide in solid oxide electrolyzer cells. ACS Catal. 2019, 9, 967-976.

39

Gu, X. K.; Carneiro, J. S. A.; Nikolla, E. First-principles study of high temperature CO2 electrolysis on transition metal electrocatalysts. Ind. Eng. Chem. Res. 2017, 56, 6155-6163.

40

Hayd, J.; Yokokawa, H.; Ivers-Tiffée, E. Hetero-interfaces at nanoscaled (La, Sr)CoO3-δ thin-film cathodes enhancing oxygen surface-exchange properties. J. Electrochem. Soc. 2013, 160, F351-F359.

41

Mutoro, E.; Crumlin, E. J.; Biegalski, M. D.; Christen, H. M.; Shao-Horn, Y. Enhanced oxygen reduction activity on surface-decorated perovskite thin films for solid oxide fuel cells. Energy Environ. Sci. 2011, 4, 3689-3696.

42

Carneiro, J. S. A.; Brocca, R. A.; Lucena, M. L. R. S.; Nikolla, E. Optimizing cathode materials for intermediate-temperature solid oxide fuel cells (SOFCs): Oxygen reduction on nanostructured lanthanum nickelate oxides. Appl. Catal. B-Environ. 2017, 200, 106-113.

43

Ma, X. F.; Carneiro, J. S. A; Gu, X. K.; Qin, H.; Xin, H. L.; Sun, K.; Nikolla, E. Engineering complex, layered metal oxides: High-performance nickelate oxide nanostructures for oxygen exchange and reduction. ACS Catal. 2015, 5, 4013-4019.

44

Gu, X. K.; Carneiro, J. S. A.; Samira, S.; Das, A.; Ariyasingha, N. M.; Nikolla, E. Efficient oxygen electrocatalysis by nanostructured mixed-metal oxides. J. Am. Chem. Soc. 2018, 140, 8128-8137.

45

Armstrong, E. N.; Duncan, K. L.; Oh, D. J.; Weaver, J. F.; Wachsman, E. D. Determination of surface exchange coefficients of LSM, LSCF, YSZ, GDC constituent materials in composite SOFC cathodes. J. Electrochem. Soc. 2011, 158, B492-B499.

46

Park, S.; Vohs, J. M.; Gorte, R. J. Direct oxidation of hydrocarbons in a solid-oxide fuel cell. Nature 2000, 404, 265-267.

47

Jiang, S. P. Nanoscale and nano-structured electrodes of solid oxide fuel cells by infiltration: Advances and challenges. Int. J. Hydrogen Energy 2012, 37, 449-470.

48

Jiang, S. P. A review of wet impregnation-an alternative method for the fabrication of high performance and nano-structured electrodes of solid oxide fuel cells. Mater. Sci. Eng. A 2006, 418, 199-210.

49

Gorte, R. J.; Vohs, J. M. Nanostructured anodes for solid oxide fuel cells. Curr. Opin. Colloid Interface Sci. 2009, 14, 236-244.

50

Vohs, J. M.; Gorte, R. J. High-performance SOFC cathodes prepared by infiltration. Adv. Mater. 2009, 21, 943-956.

51

Sholklapper, T. Z.; Jacobson, C. P.; Visco, S. J.; De Jonghe, L. C. Synthesis of dispersed and contiguous nanoparticles in solid oxide fuel cell electrodes. Fuel Cells 2008, 8, 303-312.

52

Jiang, S. P.; Ye, Y. M.; He, T. M.; Ho, S. B. Nanostructured palladium-La0.75Sr0.25Cr0.5Mn0.5O3/Y2O3-ZrO2 composite anodes for direct methane and ethanol solid oxide fuel cells. J. Power Sources 2008, 185, 179-182.

53

Huang, Y. Y.; Ahn, K.; Vohs, J. M.; Gorte, R. J. Characterization of Sr-doped LaCoO3-YSZ composites prepared by impregnation methods. J. Electrochem. Soc. 2004, 151, A1592-A1597.

54

Huang, Y. Y.; Vohs, J. M.; Gorte, R. J. An examination of LSM-LSCo mixtures for use in SOFC cathodes. J. Electrochem. Soc. 2006, 153, A951-A955.

55

Sase, M.; Ueno, D.; Yashiro, K.; Kaimai, A.; Kawada, T.; Mizusaki, J. Interfacial reaction and electrochemical properties of dense (La, Sr)CoO3-δ cathode on YSZ (100). J. Phys. Chem. Solids 2005, 66, 343-348.

56

Graves, C.; Sudireddy, B. R.; Mogensen, M. Molybdate based ceramic negative-electrode materials for solid oxide cells. ECS Trans. 2010, 28, 173-192.

57

Tao, S. W.; Irvine, J. T. S. A redox-stable efficient anode for solid-oxide fuel cells. Nat. Mater. 2003, 2, 320-323.

58

Choi, S.; Yoo, S.; Shin, J. Y.; Kim, G. High performance SOFC cathode prepared by infiltration of Lan+1NinO3n+1 (n = 1, 2, and 3) in porous YSZ. J. Electrochem. Soc. 2011, 158, B995-B999.

59

Yang, G. M.; Su, C.; Ran, R.; Tade, M. O.; Shao, Z. P. Advanced symmetric solid oxide fuel cell with an infiltrated K2NiF4-type La2NiO4 electrode. Energy Fuels 2013, 28, 356-362.

60

Zhang, X. X.; Zhang, H.; Liu, X. B. High performance La2NiO4+δ-infiltrated (La0.6Sr0.4)0.995Co0.2Fe0.8O3-δ cathode for solid oxide fuel cells. J. Power Sources 2014, 269, 412-417.

61

Zhao, H.; Mauvy, F.; Lalanne, C.; Bassat, J. M.; Fourcade, S.; Grenier, J. C. New cathode materials for ITSOFC: Phase stability, oxygen exchange and cathode properties of La2-xNiO4+δ. Solid State Ionics 2008, 179, 2000-2005.

62

Hernández, A. M.; Mogni, L.; Caneiro, A. La2NiO4+δ as cathode for SOFC: Reactivity study with YSZ and CGO electrolytes. Int. J. Hydrogen Energy 2010, 35, 6031-6036.

63

Figueiredo, F. M.; Labrincha, J. A.; Frade, J. R.; Marques, F. M. B. Reactions between a zirconia-based electrolyte and LaCoO3-based electrode materials. Solid State Ionics 1997, 101-103, 343-349.

64

Bassat, J. M.; Odier, P.; Villesuzanne, A.; Marin, C.; Pouchard, M. Anisotropic ionic transport properties in La2NiO4+δ single crystals. Solid State Ionics 2004, 167, 341-347.

65

Kim, G.; Wang, S.; Jacobson, A. J.; Chen, C. L. Measurement of oxygen transport kinetics in epitaxial La2NiO4+δ thin films by electrical conductivity relaxation. Solid State Ionics 2006, 177, 1461-1467.

66

Shen, Y. N.; Zhao, H. L.; Liu, X. T.; Xu, N. S. Preparation and electrical properties of Ca-doped La2NiO4+δ cathode materials for IT-SOFC. Phys. Chem. Chem. Phys. 2010, 12, 15124-15131.

67

Li, Y. F.; Zhang, W. Q.; Zheng, Y.; Chen, J.; Yu, B.; Chen, Y.; Liu, M. L. Controlling cation segregation in perovskite-based electrodes for high electro-catalytic activity and durability. Chem. Soc. Rev. 2017, 46, 6345-6378.

68

Rupp, G. M.; Opitz, A. K.; Nenning, A.; Limbeck, A.; Fleig, J. Real-time impedance monitoring of oxygen reduction during surface modification of thin film cathodes. Nat. Mater. 2017, 16, 640-645.

69

Druce, J.; Téllez, H.; Burriel, M.; Sharp, M. D.; Fawcett, L. J.; Cook, S. N.; McPhail, D. S.; Ishihara, T.; Brongersma, H. H.; Kilner, J. A. Surface termination and subsurface restructuring of perovskite-based solid oxide electrode materials. Energy Environ. Sci. 2014, 7, 3593-3599.

70

Burriel, M.; Téllez, H.; Chater, R. J.; Castaing, R.; Veber, P.; Zaghrioui, M.; Ishihara, T.; Kilner, J. A.; Bassat, J. M. Influence of crystal orientation and annealing on the oxygen diffusion and surface exchange of La2NiO4+δ. J. Phys. Chem. C 2016, 120, 17927-17938.

71

Burriel, M.; Wilkins, S.; Hill, J. P.; Muñoz-Márquez, M. A.; Brongersma, H. H.; Kilner, J. A.; Ryan, M. P.; Skinner, S. J. Absence of Ni on the outer surface of Sr doped La2NiO4 single crystals. Energy Environ. Sci. 2014, 7, 311-316.

72

Wu, J.; Pramana, S. S.; Skinner, S. J.; Kilner, J. A.; Horsfield, A. P. Why Ni is absent from the surface of La2NiO4+δ? J. Mater. Chem. A 2015, 3, 23760-23767.

73

Horvath, G.; Gerblinger, J.; Meixner, H.; Giber, J. Segregation driving forces in perovskite titanates. Sensors Actuat B-Chem. 1996, 32, 93-99.

74

Noguera, C.; Goniakowski, J. Polarity in oxide nano-objects. Chem. Rev. 2013, 113, 4073-4105.

75

Deak, D. S. Strontium titanate surfaces. Mater. Sci. Technol. 2007, 23, 127-136.

76

Bonnell, D. A.; Garra, J. Scanning probe microscopy of oxide surfaces: Atomic structure and properties. Rep. Prog. Phys. 2008, 71, 044501.

77

Szot, K.; Speier, W. Surfaces of reduced and oxidized SrTiO3 from atomic force microscopy. Phys. Rev. B 1999, 60, 5909-5926.

78

Szot, K.; Speier, W.; Carius, R.; Zastrow, U.; Beyer, W. Localized metallic conductivity and self-healing during thermal reduction of SrTiO3. Phys. Rev. Lett. 2002, 88, 075508.

79

Jalili, H.; Han, J. W.; Kuru, Y.; Cai, Z. H.; Yildiz, B. New insights into the strain coupling to surface chemistry, electronic structure, and reactivity of La0.7Sr0.3MnO3. J. Phys. Chem. Lett. 2011, 2, 801-807.

80

Lee, W.; Han, J. W.; Chen, Y.; Cai, Z. H.; Yildiz, B. Cation size mismatch and charge interactions drive dopant segregation at the surfaces of manganite perovskites. J. Am. Chem. Soc. 2013, 135, 7909-7925.

81

Neagu, D.; Tsekouras, G.; Miller, D. N.; Ménard, H.; Irvine, J. T. S. In situ growth of nanoparticles through control of non-stoichiometry. Nat. Chem. 2013, 5, 916-923.

82

Irvine, J. T. S.; Neagu, D.; Verbraeken, M. C.; Chatzichristodoulou, C.; Graves, C.; Mogensen, M. B. Evolution of the electrochemical interface in high-temperature fuel cells and electrolysers. Nat. Energy 2016, 1, 15014.

83

Neagu, D.; Irvine, J. T. S. Enhancing electronic conductivity in strontium titanates through correlated A and B-site doping. Chem. Mater. 2011, 23, 1607-1617.

84

Yoshimatsu, K.; Wadati, H.; Sakai, E.; Harada, T.; Takahashi, Y.; Harano, T.; Shibata, G.; Ishigami, K.; Kadono, T.; Koide, T. et al. Spectroscopic studies on the electronic and magnetic states of Co-doped perovskite manganite Pr0.8Ca0.2Mn1-yCoyO3 thin films. Phys. Rev. B 2013, 88, 174423.

85

Pavone, M.; Ritzmann, A. M.; Carter, E. A. Quantum-mechanics-based design principles for solid oxide fuel cell cathode materials. Energy Environ. Sci. 2011, 4, 4933-4937.

86

Samira, S.; Camayang, J. C. A.; Nacy, A. M.; Diaz, M.; Meira, S. M.; Nikolla, E. Electrochemical oxygen reduction on layered mixed metal oxides: Effect of B-site substitution. J. Electroanal. Chem. 2019, 833, 490-497.

87

Ma, X.; Wang, B.; Xhafa, E.; Sun, K.; Nikolla, E. Synthesis of shape-controlled La2NiO4+δ nanostructures and their anisotropic properties for oxygen diffusion. Chem. Commun. 2015, 51, 137-140.

88

Kubicek, M.; Limbeck, A.; Frömling, T.; Hutter, H.; Fleig, J. Relationship between cation segregation and the electrochemical oxygen reduction kinetics of La0.6Sr0.4CoO3-δ thin film electrodes. J. Electrochem. Soc. 2011, 158, B727-B734.

89

Baumann, F. S.; Fleig, J.; Konuma, M.; Starke, U.; Habermeier, H. U.; Maier, J. Strong performance improvement of La0.6Sr0.4Co0.8Fe0.2O3-δ SOFC cathodes by electrochemical activation. J. Electrochem. Soc. 2005, 152, A2074-A2079.

90

Nishihata, Y.; Mizuki, J.; Akao, T.; Tanaka, H.; Uenishi, M.; Kimura, M.; Okamoto, T.; Hamada, N. Self-regeneration of a Pd-perovskite catalyst for automotive emissions control. Nature 2002, 418, 164-167.

91

Kan, W. H.; Samson, A. J.; Thangadurai, V. Trends in electrode development for next generation solid oxide fuel cells. J. Mater. Chem. A 2016, 4, 17913-17932.

92

Sun, Y. F.; Li, J. H.; Cui, L.; Hua, B.; Cui, S. H.; Li, J.; Luo, J. L. A-site-deficiency facilitated in situ growth of bimetallic Ni-Fe nano-alloys: A novel coking-tolerant fuel cell anode catalyst. Nanoscale 2015, 7, 11173-11181.

93

Yang, C. H.; Li, J.; Lin, Y.; Liu, J.; Chen, F. L.; Liu, M. L. In situ fabrication of CoFe alloy nanoparticles structured (Pr0.4Sr0.6)3(Fe0.85Nb0.15)2O7 ceramic anode for direct hydrocarbon solid oxide fuel cells. Nano Energy 2015, 11, 704-710.

94

Zhu, Y. L.; Zhou, W.; Ran, R.; Chen, Y. B.; Shao, Z. P.; Liu, M. L. Promotion of oxygen reduction by exsolved silver nanoparticles on a perovskite scaffold for low-temperature solid oxide fuel cells. Nano Lett. 2016, 16, 512-518.

95

Sun, Y. F.; Li, J. H.; Wang, M. N.; Hua, B.; Li, J.; Luo, J. L. A-site deficient chromite perovskite with in situ exsolution of nano-Fe: A promising bi-functional catalyst bridging the growth of CNTs and SOFCs. J. Mater. Chem. A 2015, 3, 14625-14630.

96

Sun, Y. F.; Li, J. H.; Zeng, Y. M.; Amirkhiz, B. S.; Wang, M. N.; Behnamian, Y.; Luo, J. L. A-site deficient perovskite: The parent for in situ exsolution of highly active, regenerable nano-particles as SOFC anodes. J. Mater. Chem. A 2015, 3, 11048-11056.

97

Zhang, J.; Xie, K.; Gan, Y.; Wu, G. J.; Ding, B.; Zhang, Y.; Wu, Y. C. Composite titanate cathode enhanced with in situ grown nickel nanocatalyst for direct steam electrolysis. New J. Chem. 2014, 38, 3434-3442.

98

Tsekouras, G.; Neagu, D.; Irvine, J. T. S. Step-change in high temperature steam electrolysis performance of perovskite oxide cathodes with exsolution of B-site dopants. Energy Environ. Sci. 2013, 6, 256-266.

99

Oh, T. S.; Rahani, E. K.; Neagu, D.; Irvine, J. T. S.; Shenoy, V. B.; Gorte, R. J.; Vohs, J. M. Evidence and model for strain-driven release of metal nanocatalysts from perovskites during exsolution. J. Phys. Chem. Lett. 2015, 6, 5106-5110.

100

Papargyriou, D.; Irvine, J. T. S. Nickel nanocatalyst exsolution from (La, Sr)(Cr, M, Ni)O3 (M = Mn, Fe) perovskites for the fuel oxidation layer of oxygen transport membranes. Solid State Ionics 2016, 288, 120-123.

101

Yoon, H.; Zou, J.; Sammes, N. M.; Chung, J. Ru-doped lanthanum strontium titanates for the anode of solid oxide fuel cells. Int. J. Hydrogen Energy 2015, 40, 10985-10993.

102

Thalinger, R.; Gocyla, M.; Heggen, M.; Klötzer, B.; Penner, S. Exsolution of Fe and SrO nanorods and nanoparticles from lanthanum strontium ferrite La0.6Sr0.4FeO3-δ materials by hydrogen reduction. J. Phys. Chem. C 2015, 119, 22050-22056.

103

Zhou, W.; Shao, Z. P.; Liang, F. L.; Chen, Z. G.; Zhu, Z. H.; Jin, W. Q.; Xu, N. P. A new cathode for solid oxide fuel cells capable of in situ electrochemical regeneration. J. Mater. Chem. 2011, 21, 15343-15351.

104

Wei, T.; Singh, P.; Gong, Y. H.; Goodenough, J. B.; Huang, Y. H.; Huang, K. V. Sr3-3xNa3xSi3O9-1.5x (x = 0.45) as a superior solid oxide-ion electrolyte for intermediate temperature-solid oxide fuel cells. Energy Environ. Sci. 2014, 7, 1680-1684.

105

Gao, Z.; Miller, E. C.; Barnett, S. A. A high power density intermediate-temperature solid oxide fuel cell with thin (La0.9Sr0.1)0.98(Ga0.8Mg0.2)O3-δ electrolyte and nano-scale anode. Adv. Funct. Mater. 2014, 24, 5703-5709.

106

Lee, J. J.; Moon, H.; Park, H. G.; Yoon, D. I.; Hyun, S. H. Applications of nano-composite materials for improving the performance of anode-supported electrolytes of SOFCs. Int. J. Hydrogen Energy 2010, 35, 738-744.

107

Kim, G.; Lee, S.; Shin, J. Y.; Corre, G.; Irvine, J. T. S.; Vohs, J. M.; Gorte, R. J. Investigation of the structural and catalytic requirements for high-performance SOFC anodes formed by infiltration of LSCM. Electrochem. Solid-State Lett. 2009, 12, B48-B52.

108

Lee, J. G.; Park, M. G.; Hyun, S. H.; Shul, Y. G. Nano-composite Ni-Gd0.1Ce0.9O1.95 anode functional layer for low temperature solid oxide fuel cells. Electrochim. Acta 2014, 129, 100-106.

109

Tsvetkov, N.; Lu, Q. Y.; Sun, L. X.; Crumlin, E. J.; Yildiz, B. Improved chemical and electrochemical stability of perovskite oxides with less reducible cations at the surface. Nat. Mater. 2016, 15, 1010-1016.

110

Han, D.; Liu, X. J.; Zeng, F. R.; Qian, J. Q.; Wu, T. Z.; Zhan, Z. L. A micro-nano porous oxide hybrid for efficient oxygen reduction in reduced-temperature solid oxide fuel cells. Sci. Rep. 2012, 2, 462.

111

Xia, C. R.; Liu, M. L. Low-temperature SOFCs based on Gd0.1Ce0.9O1.95 fabricated by dry pressing. Solid State Ionics 2001, 144, 249-255.

112

Zhang, L.; Chen, F. L.; Xia, C. R. Spin-coating derived solid oxide fuel cells operated at temperatures of 500 ℃ and below. Int. J. Hydrogen Energy 2010, 35, 13262-13270.

113

Kim, J. W.; Virkar, A. V.; Fung, K. Z.; Mehta, K.; Singhal, S. C. Polarization effects in intermediate temperature, anode-supported solid oxide fuel cells. J. Electrochem. Soc. 1999, 146, 69-78.

114

De Souza, S.; Visco, S. J.; De Jonghe, L. C. Thin-film solid oxide fuel cell with high performance at low-temperature. Solid State Ionics 1997, 98, 57-61.

115

Kim, C.; Jang, I.; Kim, S.; Yoon, H.; Paik, U. Ba0.5Sr0.5Co0.8Fe0.2O3-δ/Gd0.1Ce0.9O2-δ core/shell nanofiber via one-step electrospinning for cathode of LT-SOFCs. ECS Trans. 2017, 78, 637-641.

116

Peng, Z. Q.; Freunberger, S. A.; Chen, Y. H.; Bruce, P. G. A reversible and higher-rate Li-O2 battery. Science 2012, 337, 563-566.

117

Xu, X. Y.; Xia, C. R.; Huang, S. G.; Peng, D. K. YSZ thin films deposited by spin-coating for IT-SOFCs. Ceram. Int. 2005, 31, 1061-1064.

118

Moon, H.; Kim, S. D.; Hyun, S. H.; Kim, H. S. Development of IT-SOFC unit cells with anode-supported thin electrolytes via tape casting and co-firing. Int. J. Hydrogen Energy 2008, 33, 1758-1768.

119

Liu, Y.; Compson, C.; Liu, M. L. Nanostructured and functionally graded cathodes for intermediate temperature solid oxide fuel cells. J. Power Sources 2004, 138, 194-198.

120

Tsai, T.; Barnett, S. A. Effect of LSM-YSZ cathode on thin-electrolyte solid oxide fuel cell performance. Solid State Ionics 1997, 93, 207-217.

121

Kan, H.; Lee, H. Sn-doped Ni/YSZ anode catalysts with enhanced carbon deposition resistance for an intermediate temperature SOFC. Appl. Catal. B-Environ. 2010, 97, 108-114.

122

Leng, Y. J.; Chan, S. H.; Khor, K. A.; Jiang, S. P. Performance evaluation of anode-supported solid oxide fuel cells with thin film YSZ electrolyte. Int. J. Hydrogen Energy 2004, 29, 1025-1033.

123

Tsai, T.; Perry, E.; Barnett, S. A. Low-temperature solid-oxide fuel cells utilizing thin bilayer electrolytes. J. Electrochem. Soc. 1997, 144, L130-L132.

124

Kim, H. J.; Kim, M.; Neoh, K. C.; Han, G. D.; Bae, K.; Shin, J. M.; Kim, G. T.; Shim, J. H. Slurry spin coating of thin film yttria stabilized zirconia/gadolinia doped ceria bi-layer electrolytes for solid oxide fuel cells. J. Power Sources 2016, 327, 401-407.

125

Lim, H. T.; Virkar, A. V. Measurement of oxygen chemical potential in Gd2O3-doped ceria-Y2O3-stabilized zirconia bi-layer electrolyte, anode-supported solid oxide fuel cells. J. Power Sources 2009, 192, 267-278.

126

Cho, S.; Kim, Y.; Kim, J. H.; Manthiram, A.; Wang, H. Y. High power density thin film SOFCs with YSZ/GDC bilayer electrolyte. Electrochim. Acta 2011, 56, 5472-5477.

127

Zhao, F.; Wang, Z. Y.; Liu, M. F.; Zhang, L.; Xia, C. R.; Chen, F. L. Novel nano-network cathodes for solid oxide fuel cells. J. Power Sources 2008, 185, 13-18.

128

Choi, S.; Yoo, S.; Kim, J.; Park, S.; Jun, A.; Sengodan, S.; Kim, J.; Shin, J.; Jeong, H. Y.; Choi, Y. et al. Highly efficient and robust cathode materials for low-temperature solid oxide fuel cells: PrBa0.5Sr0.5Co2-xFexO5+δ. Sci. Rep. 2013, 3, 2426.

129

Xia, C. R.; Chen, F. L.; Liu, M. L. Reduced-temperature solid oxide fuel cells fabricated by screen printing. Electrochem. Solid-State Lett. 2001, 4, A52-A54.

130

Zhang, X. E.; Robertson, M.; Yick, S.; Deĉes-Petit, C.; Styles, E.; Qu, W.; Xie, Y. S.; Hui, R.; Roller, J.; Kesler, O. et al. Sm0.5Sr0.5CoO3 + Sm0.2Ce0.8O1.9 composite cathode for cermet supported thin Sm0.2Ce0.8O1.9 electrolyte SOFC operating below 600 ℃. J. Power Sources 2006, 160, 1211-1216.

131

Wang, Z. C.; Weng, W. J.; Chen, K.; Shen, G.; Du, P. Y.; Han, G. R. Preparation and performance of nanostructured porous thin cathode for low-temperature solid oxide fuel cells by spin-coating method. J. Power Sources 2008, 175, 430-435.

132

Kwon, O.; Sengodan, S.; Kim, K.; Kim, G.; Jeong, H. Y.; Shin, J.; Ju, Y. W.; Han, J. W.; Kim, G. Exsolution trends and co-segregation aspects of self-grown catalyst nanoparticles in perovskites. Nat. Commun. 2017, 8, 15967.

Nano Research
Pages 2081-2092
Cite this article:
Carneiro J, Nikolla E. Nanoengineering of solid oxide electrochemical cell technologies: An outlook. Nano Research, 2019, 12(9): 2081-2092. https://doi.org/10.1007/s12274-019-2375-y
Topics:
Part of a topical collection:

1229

Views

22

Crossref

N/A

Web of Science

22

Scopus

3

CSCD

Altmetrics

Received: 15 January 2019
Revised: 08 March 2019
Accepted: 09 March 2019
Published: 30 March 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return