Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Control of surface structure at the atomic level can effectively tune catalytic properties of nanomaterials. Tuning surface strain is an effective strategy for enhancing catalytic activity; however, the correlation studies between the surface strain with catalytic performance are scant because such mechanistic studies require the precise control of surface strain on catalysts. In this work, a simple strategy of precisely tuning compressive surface strain of atomic-layer Cu2O on Cu@Ag (AL-Cu2O/Cu@Ag) nanoparticles (NPs) is demonstrated. The AL-Cu2O is synthesized by structure evolution of Cu@Ag core-shell nanoparticles, and the precise thickness-control of AL-Cu2O is achieved by tuning the molar ratio of Cu/Ag of the starting material. Aberration-corrected high-resolution transmission electron microscopy (AC-HRTEM) and EELS elemental mapping characterization showed that the compressive surface strain of AL-Cu2O along the [111] and [200] directions can be precisely tuned from 6.5% to 1.6% and 6.6% to 4.7%, respectively, by changing the number of AL-Cu2O layer from 3 to 6. The as-prepared AL-Cu2O/Cu@Ag NPs exhibited excellent catalytic property in the synthesis of azobenzene from aniline, in which the strained 4-layers Cu2O (4.5% along the [111] direction, 6.1% along the [200] direction) exhibits the best catalytic performance. This work may be beneficial for the design and surface engineering of catalysts toward specific applications.
Bu, L. Z.; Zhang, N.; Guo, S. J.; Zhang, X.; Li, J.; Yao, J. L.; Wu, T.; Lu, G.; Ma, J. Y.; Su, D. et al. Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science 2016, 354, 1410–1414.
Liu, C.; Ma, Z.; Cui, M. Y.; Zhang, Z. Y.; Zhang, X.; Su, D.; Murray, C. B.; Wang, J. X.; Zhang, S. Favorable core/shell interface within Co2P/Pt nanorods for oxygen reduction electrocatalysis. Nano Lett. 2018, 18, 7870–7875.
Luo, M. C.; Guo, S. J. Strain-controlled electrocatalysis on multimetallic nanomaterials. Nat. Rev. Mater. 2017, 2, 17059.
Mao, J. J.; Chen, W. X.; Sun, W. M.; Chen, Z.; Pei, J. J.; He, D. S.; Lv, C. L.; Wang, D. S.; Li, Y. D. Rational control of the selectivity of a ruthenium catalyst for hydrogenation of 4-nitrostyrene by strain regulation. Angew. Chem., Int. Ed. 2017, 56, 11971–11975.
Strasser, P.; Koh, S.; Anniyev, T.; Greeley, J.; More, K.; Yu, C. F.; Liu, Z. C.; Kaya, S.; Nordlund, D.; Ogasawara, H. et al. Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts. Nat. Chem. 2010, 2, 454–460.
Tang, C. Y.; Zhang, N.; Ji, Y. J.; Shao, Q.; Li, Y. Y.; Xiao, X. H.; Huang, X. Q. Fully tensile strained Pd3Pb/Pd tetragonal nanosheets enhance oxygen reduction catalysis. Nano Lett. 2019, 19, 1336–1342.
Wang, H. T.; Xu, S. C.; Tsai, C.; Li, Y. Z.; Liu, C.; Zhao, J.; Liu, Y. Y.; Yuan, H. Y.; Abild-Pedersen, F.; Prinz, F. B. et al. Direct and continuous strain control of catalysts with tunable battery electrode materials. Science 2016, 354, 1031–1036.
Wang, X. S.; Zhu, Y. H.; Vasileff, A.; Jiao, Y.; Chen, S. M.; Song, L.; Zheng, B.; Zheng, Y.; Qiao, S. Z. Strain effect in bimetallic electrocatalysts in the hydrogen evolution reaction. ACS Energy Lett. 2018, 3, 1198–1204.
Xue, Y. Y.; Ge, H.; Chen, Z.; Zhai, Y. B.; Zhang, J.; Sun, J. Q.; Abbas, M.; Lin, K.; Zhao, W. T.; Chen, J. G. Effect of strain on the performance of iron-based catalyst in Fischer-Tropsch synthesis. J. Catal. 2018, 358, 237–242.
Zhang, E. H.; Ma, F. F.; Liu, J.; Sun, J. Y.; Chen, W. X.; Rong, H. P.; Zhu, X. Y.; Liu, J. J.; Xu, M.; Zhuang, Z. B. et al. Porous platinum-silver bimetallic alloys: Surface composition and strain tunability toward enhanced electrocatalysis. Nanoscale 2018, 10, 21703–21711.
Zhang, S.; Zhang, X.; Jiang, G. M.; Zhu, H. Y.; Guo, S. J.; Su, D.; Lu, G.; Sun, S. H. Tuning nanoparticle structure and surface strain for catalysis optimization. J. Am. Chem. Soc. 2014, 136, 7734–7739.
Zhu, H.; Gao, G. H.; Du, M. L.; Zhou, J. H.; Wang, K.; Wu, W. B.; Chen, X.; Li, Y.; Ma, P. M.; Dong, W. F. et al. Atomic-scale core/shell structure engineering induces precise tensile strain to boost hydrogen evolution catalysis. Adv. Mater. 2018, 30, e1707301.
Feng, Q. C.; Zhao, S.; He, D. S.; Tian, S. B.; Gu, L.; Wen, X. D.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Strain engineering to enhance the electrooxidation performance of atomic-layer Pt on intermetallic Pt3Ga. J. Am. Chem. Soc. 2018, 140, 2773–2776.
Khorshidi, A.; Violet, J.; Hashemi, J.; Peterson, A. A. How strain can break the scaling relations of catalysis. Nat. Catal. 2018, 1, 263–268.
He, J.; Shen, Y. L.; Yang, M. Z.; Zhang, H. X.; Deng, Q. B.; Ding, Y. The effect of surface strain on the CO-poisoned surface of Pt electrode for hydrogen adsorption. J. Catal. 2017, 350, 212–217.
Wang, D. L.; Xin, H. L.; Hovden, R.; Wang, H. S.; Yu, Y. C.; Muller, D. A.; DiSalvo, F. J.; Abruna, H. D. Structurally ordered intermetallic platinum-cobalt core-shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nat. Mater. 2013, 12, 81–87.
Zhou, G. W.; Ji, H. H.; Bai, Y. H.; Quan, Z. Y.; Xu, X. H. Intrinsic exchange bias effect in strain-engineered single antiferromagnetic LaMnO3 films. Sci. China Mater., in press, DOI: 10.1007/s40843-018-9387-0.
Wang, C. Y.; Sang, X. H.; Gamler, J. T. L.; Chen, D. P.; Unocic, R. R.; Skrabalak, S. E. Facet-dependent deposition of highly strained alloyed shells on intermetallic nanoparticles for enhanced electrocatalysis. Nano Lett. 2017, 17, 5526–5532.
Escudero-Escribano, M.; Malacrida, P.; Hansen, M. H.; Vej-Hansen, U. G.; Velázquez-Palenzuela, A.; Tripkovic, V.; Schiøtz, J.; Rossmeisl, J.; Stephens, I. E. L.; Chorkendorff, I. Tuning the activity of Pt alloy electrocatalysts by means of the lanthanide contraction. Science 2016, 352, 73–76.
Biele, R.; Flores, E.; Ares, J. R.; Sanchez, C.; Ferrer, I. J.; Rubio-Bollinger, G.; Castellanos-Gomez, A.; D'Agosta, R. Strain-induced band gap engineering in layered TiS3. Nano Res. 2017, 11, 225–232.
Yu, Y. S.; Yang, W. W.; Sun, X. L.; Zhu, W. L.; Li, X. Z.; Sellmyer, D. J.; Sun, S. H. Monodisperse MPt (M = Fe, Co, Ni, Cu, Zn) nanoparticles prepared from a facile oleylamine reduction of metal salts. Nano Lett. 2014, 14, 2778–2782.
Chen, W.; Li, L. L.; Peng, Q.; Li, Y. D. Polyol synthesis and chemical conversion of Cu2O nanospheres. Nano Res. 2012, 5, 320–326.
Rice, K. P.; Walker, E. J. Jr.; Stoykovich, M. P.; Saunders, A. E. Solvent-dependent surface plasmon response and oxidation of copper nanocrystals. J. Phy. Chem. C 2011, 115, 1793–1799.
Kong, L. N.; Chen, W.; Ma, D. K.; Yang, Y.; Liu, S. S.; Huang, S. M. Size control of Au@Cu2O octahedra for excellent photocatalytic performance. J. Mater. Chem. 2012, 22, 719–724.
Feng, Y. G.; Shao, Q.; Huang, B. L.; Zhang, J. B.; Huang, X. Q. Surface engineering at the interface of core/shell nanoparticles promotes hydrogen peroxide generation. Nat. Sci. Rev. 2018, 5, 895–906.
Bu, L. Z.; Guo, S. J.; Zhang, X.; Shen, X.; Su, D.; Lu, G.; Zhu, X.; Yao, J. L.; Guo, J.; Huang, X. Q. Surface engineering of hierarchical platinum-cobalt nanowires for efficient electrocatalysis. Nat. Commun. 2016, 7, 11850.
Sun, T. T.; Xu, L. B.; Wang, D. S.; Li, Y. D. Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res., in press, DOI: 10.1007/s12274-019-2345-4.
Muzikansky, A.; Nanikashvili, P.; Grinblat, J.; Zitoun, D. Ag dewetting in Cu@Ag monodisperse core–shell nanoparticles. J. Phys. Chem. C 2013, 117, 3093–3100.
Osowiecki, W. T.; Ye, X. C.; Satish, P.; Bustillo, K. C.; Clark, E. L.; Alivisatos, A. P. Tailoring morphology of Cu-Ag nanocrescents and core-shell nanocrystals guided by a thermodynamic model. J. Am. Chem. Soc. 2018, 140, 8569–8577.
Liu, S. J.; Sun, Z. H.; Liu, Q. H.; Wu, L. H.; Huang, Y. Y.; Yao, T.; Zhang, J.; Hu, T. D.; Ge, M. R.; Hu, F. C. et al. Unidirectional thermal diffusion in bimetallic Cu@Au nanoparticles. ACS Nano 2014, 8, 1886–1892.
Masaharu, T.; Sachie, H.; Yoshiyuki, S.; Misao, H. Preparation of Cu@Ag core–shell nanoparticles using a two-step polyol process under bubbling of N2 gas. Chem. Lett. 2009, 38, 518–519.
Pellarin, M.; Issa, I.; Langlois, C.; Lebeault, M. A.; Ramade, J.; Lermé, J.; Broyer, M.; Cottancin, E. Plasmon spectroscopy and chemical structure of small bimetallic Cu(1–x)Agx Clusters. J. Phy. Chem. C 2015, 119, 5002–5012.
Zhao, Q.; Ji, M. W.; Qian, H. M.; Dai, B. S.; Weng, L.; Gui, J.; Zhang, J. T.; Ouyang, M.; Zhu, H. S. Controlling structural symmetry of a hybrid nanostructure and its effect on efficient photocatalytic hydrogen evolution. Adv. Mater. 2014, 26, 1387–1392.
Zhang, J. T.; Tang, Y.; Lee, K.; Ouyang, M. Tailoring light-matter-spin interactions in colloidal hetero-nanostructures. Nature 2010, 466, 91–95.
Li, W. Y.; Camargo, P. H. C.; Lu, X. M.; Xia, Y. N. Dimers of silver nanospheres: Facile synthesis and their use as hot spots for surface-enhanced Raman scattering. Nano Lett. 2009, 9, 485–490.
Wang, P. T.; Qiao, M.; Shao, Q.; Pi, Y. C.; Zhu, X.; Li, Y. F.; Huang, X. Q. Phase and structure engineering of copper tin heterostructures for efficient electrochemical carbon dioxide reduction. Nat. Commun. 2018, 9, 4933.
Fu, L.; Shang, C. Q.; Ma, J.; Zhang, C. J.; Zang, X.; Chai, J. C.; Li, J. D.; Cui, G. L. Cu2GeS3 derived ultrafine nanoparticles as high-performance anode for sodium ion battery. Sci. China Mater. 2018, 61, 1177–1184.
Yin, M.; Wu, C. K.; Lou, Y. B.; Burda, C.; Koberstein, J. T.; Zhu, Y. M.; O'Brien, S. Copper oxide nanocrystals. J. Am. Chem. Soc. 2005, 127, 9506–9511.
Biesinger, M. C.; Lau, L. W. M.; Gerson, A. R.; Smart, R. S. C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl. Surf. Sci. 2010, 257, 887–898.
Cai, W. P.; Zhong, H. C.; Zhang, L. D. Optical measurements of oxidation behavior of silver nanometer particle within pores of silica host. J. Appl. Phys. 1998, 83, 1705–1710.
Erasmus, E.; Thüne, P. C.; Verhoeven, M. W. G. M.; Niemantsverdriet, J. W.; Swarts, J. C. A new approach to silver-catalysed aerobic oxidation of octadecanol: Probing catalysts utilising a flat, two-dimensional silicon-based model support system. Catal. Commun. 2012, 27, 193–199.
Jiang, X.; Liu, Y.; Wang, J. X.; Wang, Y. F.; Xiong, Y. X.; Liu, Q.; Li, N. X.; Zhou, J. C.; Fu, G. T.; Sun, D. M. et al. 1-Naphthol induced Pt3Ag nanocorals as bifunctional cathode and anode catalysts of direct formic acid fuel cells. Nano Res. 2019, 12, 323–329.
Stewart, I. E.; Ye., S. R.; Chen, Z. F.; Flowers, P. F.; Wiley, B. J. Synthesis of Cu–Ag, Cu–Au, and Cu–Pt core–shell nanowires and their use in transparent conducting films. Chem. Mater. 2015, 27, 7788–7794.
Dai, Y. T.; Li, C.; Shen, Y. B.; Lim, T; Xu, J.; Li, Y. W.; Niemantsverdriet, H.; Besenbacher, F.; Lock, N.; Su, R. Light-tuned selective photosynthesis of azo- and azoxy-aromatics using graphitic C3N4. Nat. Commun. 2018, 9, 60.
Grirrane, A.; Corma, C.; García, H. Gold-catalyzed synthesis of aromatic Azo compounds from anilines and nitroaromatics. Science 2008, 322, 1661–1664.
Dutta, B.; Biswas, S.; Sharma, V.; Savage, N. O.; Alpay, S. P.; Suib, S. L. Mesoporous manganese oxide catalyzed aerobic oxidative coupling of anilines to aromatic azo compounds. Angew. Chem. 2016, 128, 2211–2215.
Cai, S. F.; Rong, H. P.; Yu, X. F.; Liu, X. W.; Wang, D. S.; He, W.; Li, Y. D. Room temperature activation of oxygen by monodispersed metal nanoparticles: Oxidative dehydrogenative coupling of anilines for azobenzene syntheses. ACS Catal. 2013, 3, 478–486.
Guo, X. N.; Hao, C. H.; Jin, G. Q.; Zhu, H. Y.; Guo, X. Y. Copper Nanoparticles on Graphene Support: An efficient photocatalyst for coupling of nitroaromatics in visible light. Angew. Chem., Int. Ed. 2014, 53, 1973–1977.
Hung, L. I.; Tsung, C. K.; Huang, W. Y.; Yang, P. D. Room-temperature formation of hollow Cu2O nanoparticles. Adv. Mater. 2010, 22, 1910–1914.