AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

One-pot synthesis of highly conductive nickel-rich phosphide/CNTs hybrid as a polar sulfur host for high-rate and long-cycle Li-S battery

Xiao-Fei YuDong-Xu TianWen-Cui LiBin HeYu ZhangZhi-Yuan ChenAn-Hui Lu( )
State Key Laboratory of Fine Chemicals,School of Chemical Engineering, Dalian University of Technology,Dalian,116024,China;
Show Author Information

Graphical Abstract

Abstract

Lithium sulfur battery has been identified as a promising candidate for next storage devices attributing to ultrahigh energy density. However, non-conductive nature of sulfur and shuttling effect of soluble lithium polysulfides are intractable remaining problems. Herein, we develop a highly conductive nickel-rich Ni12P5/CNTs hybrid with high specific surface area as sulfur host to address these issues. The polar nature of Ni12P5/CNTs can significantly relieve the shuttle effect by means of a strong affinity towards lithium polysulfides and enhance kinetics of polysulfides redox reactions. In addition, the Ni12P5/CNTs with a superior conductivity (500 S·m-1) and high surface area of 395 m2·g-1 enables the effective electron transfer and expedited interfacial reaction. As a result, Ni12P5/CNTs hosted sulfur cathode exhibits high rate capability (784 mAh·g-1 at 4 C) and stable cycling performance with a negligible capacity fading of 0.057 % per cycle over 1, 000 cycles at 0.5 C. This work paves an alternative way for designing high performance sulfur cathodes involved metal-rich phosphides.

Electronic Supplementary Material

Download File(s)
12274_2019_2381_MOESM1_ESM.pdf (3.6 MB)

References

1

Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.

2

Manthiram, A.; Fu, Y. Z.; Chung, S. H.; Zu, C. X.; Su, Y. S. Rechargeable lithium–sulfur batteries. Chem. Rev. 2014, 114, 11751–11787.

3

Yin, Y. X.; Xin, S.; Guo, Y. G.; Wan, L. J. Lithium–sulfur batteries: Electrochemistry, materials, and prospects. Angew. Chem. , Int. Ed. 2013, 52, 13186–13200.

4

Goodenough, J. B.; Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 2010, 22, 587–603.

5

Larcher, D.; Tarascon, J. M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 2015, 7, 19–29.

6

Urbonaite, S.; Poux, T.; Novák, P. Progress towards commercially viable Li–S battery cells. Adv. Energy Mater. 2015, 5, 1500118.

7

Yang, Y.; Zheng, G. Y.; Cui, Y. Nanostructured sulfur cathodes. Chem. Soc. Rev. 2013, 42, 3018–3032.

8

Moon, S.; Jung, Y. H.; Jung, W. K.; Jung, D. S.; Choi, J. W.; Kim, D. K. Encapsulated monoclinic sulfur for stable cycling of Li–S rechargeable batteries. Adv. Mater. 2013, 25, 6547–6553.

9

Zhang, S. S. Liquid electrolyte lithium/sulfur battery: Fundamental chemistry, problems, and solutions. J. Power Sources 2013, 231, 153–162.

10

Zhang, Z.; Wu, D. H.; Zhou, Z.; Li, G. R.; Liu, S.; Gao, X. P. Sulfur/nickel ferrite composite as cathode with high-volumetric-capacity for lithium-sulfur battery. Sci. China Mater. 2019, 62, 74–86, DOI: 10.1007/s40843-018-9292-7.

11

He, B.; Li, W. C.; Yang, C.; Wang, S. Q.; Lu, A. H. Incorporating sulfur inside the pores of carbons for advanced lithium–sulfur batteries: An electrolysis approach. ACS Nano 2016, 10, 1633–1639.

12

Zhao, M. Q.; Zhang, Q.; Huang, J. Q.; Tian, G. L.; Nie, J. Q.; Peng, H. J.; Wei, F. Unstacked double-layer templated graphene for high-rate lithium–sulphur batteries. Nat. Commun. 2014, 5, 3410.

13

Hu, G. J; Xu, C.; Sun, Z. H.; Wang, S. G.; Cheng, H. M.; Li, F.; Ren, W. C. 3D graphene-foam-reduced-graphene-oxide hybrid nested hierarchical networks for high-performance Li-S batteries. Adv. Mater. 2016, 28, 1603–1609.

14

Zhao, M. Q.; Peng, H. J.; Tian, G. L.; Zhang, Q.; Huang, J. Q.; Cheng, X. B.; Tang, C.; Wei, F. Hierarchical vine-tree-like carbon nanotube architectures: In-situ CVD self-assembly and their use as robust scaffolds for lithium-sulfur batteries. Adv. Mater. 2014, 26, 7051–7058.

15

Zhao, Y.; Wu, W.; Li, J.; Xu, Z.; Guan, L. Encapsulating MWNTs into hollow porous carbon nanotubes: A tube-in-tube carbon nanostructure for high-performance lithium-sulfur batteries. Adv. Mater. 2014, 26, 5113–5118.

16

Zhang, X. Q.; He, B.; Li, W. C.; Lu, A. H. Hollow carbon nanofibers with dynamic adjustable pore sizes and closed ends as hosts for high-rate lithium-sulfur battery cathodes. Nano Res. 2018, 11, 1238–1246.

17

Zhou, G. M.; Li, L.; Wang, D. W.; Shan, X. Y.; Pei, S. F.; Li, F.; Cheng, H. M. Flexible sulfur-graphene-polypropylene separator integrated electrode for advanced Li-S batteries. Adv. Mater. 2015, 27, 641–647.

18

Sun, Q.; He, B.; Zhang, X. Q.; Lu, A. H. Engineering of hollow core–shell interlinked carbon spheres for highly stable lithium–sulfur batteries. ACS Nano 2015, 9, 8504–8513.

19

Zhang, L. H.; He, B.; Li, W. C.; Lu, A. H. Surface free energy-induced assembly to the synthesis of grid-like multicavity carbon spheres with high level in-cavity encapsulation for Lithium–Sulfur cathode. Adv. Energy Mater. 2017, 7, 1701518.

20

Li, D.; Han, F.; Wang, S.; Cheng, F.; Sun, Q.; Li, W. C. High sulfur loading cathodes fabricated using peapodlike, large pore volume mesoporous carbon for Lithium–Sulfur battery. ACS Appl. Mater. Interfaces 2013, 5, 2208–2213.

21

Song, J. X.; Gordin, M. L.; Xu, T.; Chen, S. R.; Yu, Z. X.; Sohn, H.; Lu, J.; Ren, Y.; Duan, Y. H.; Wang, D. H. Strong lithium polysulfide chemisorption on electroactive sites of nitrogen-doped carbon composites for high-performance lithium–sulfur battery cathodes. Angew. Chem., Int. Ed. 2015, 127, 4399–4403.

22

Yang, C. P.; Yin, Y. X.; Ye, H; Jiang, K. C.; Zhang, J.; Guo, Y. G. Insight into the effect of boron doping on sulfur/carbon cathode in lithium–sulfur batteries. ACS Appl. Mater. Interfaces 2014, 6, 8789–8795.

23

Zhou, G. M.; Yin, L. C.; Wang, D. W.; Li, L.; Pei, S. F.; Gentle, I. R.; Li, F.; Cheng, H. M. Fibrous hybrid of graphene and sulfur nanocrystals for high-performance Lithium–Sulfur batteries. ACS Nano 2013, 7, 5367–5375.

24

Pang, Q.; Tang, J. T.; Huang, H.; Liang, X.; Hart, C.; Tam, K. C.; Nazar, L. F. A nitrogen and sulfur dual-doped carbon derived from polyrhodanine@cellulose for advanced lithium-sulfur batteries. Adv. Mater. 2015, 27, 6021–6028.

25

Gu, X. X.; Tong, C. J.; Lai, C.; Qiu, J. X.; Huang, X. X.; Yang, W. L.; Wen, B.; Liu, L. M.; Hou, Y. L.; Zhang, S. Q. A porous nitrogen and phosphorous dual doped graphene blocking layer for high performance Li–S batteries. J. Mater. Chem. A 2015, 3, 16670–16678.

26

Liang, X.; Hart, C.; Pang, Q.; Garsuch, A.; Weiss, T.; Nazar, L. F. A highly efficient polysulfide mediator for lithium–sulfur batteries. Nat. Commun. 2015, 6, 5682.

27

Seh, Z. W.; Li, W. Y.; Cha, J. J.; Zheng, G. Y.; Yang, Y.; McDowell, M. T.; Hsu, P. C.; Cui, Y. Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries. Nat. Commun. 2013, 4, 1331.

28

Li, C. X.; Xi, Z. C.; Guo, D. X.; Chen, X. J.; Yin, L. W. Chemical immobilization effect on Lithium polysulfides for lithium–sulfur batteries. Small 2018, 14, 1701986.

29

Ma, L. B.; Chen, R. P.; Zhu, G. Y.; Hu, Y.; Wang, Y. R.; Chen, T.; Liu, J; Jin, Z. Cerium oxide nanocrystal embedded bimodal micromesoporous nitrogen-rich carbon nanospheres as effective sulfur host for lithium-sulfur batteries. ACS Nano 2017, 11, 7274–7283.

30

Wang, H. Q.; Zhang, W. C.; Xu, J. Z.; Guo, Z. P. Advances in polar materials for lithium–sulfur batteries. Adv. Funct. Mater. 2018, 28, 1707520.

31

Tao, X. Y.; Wang, J. G.; Liu, C.; Wang, H. T.; Yao, H. B.; Zheng, G. Y.; Seh, Z. W.; Cai, Q. X.; Li, W. Y.; Zhou, G. M. et al. Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium-sulfur battery design. Nat. Commun. 2016, 7, 11203.

32

Xu, Y. Y.; Duan, S. B.; Li, H. Y.; Yang, M.; Wang, S. J.; Wang, X.; Wang, R. M. Au/Ni12P5 core/shell single-crystal nanoparticles as oxygen evolution reaction catalyst. Nano Res. 2017, 10, 3103–3112.

33

Shi, Y. M.; Zhang, B. Recent advances in transition metal phosphide nanomaterials: Synthesis and applications in hydrogen evolution reaction. Chem. Soc. Rev. 2016, 45, 1529–1541.

34

Ji, P. H.; Shang, B.; Peng, Q. M.; Hu, X. B.; Wei, J. W. α-MoO3 spheres as effective polysulfides adsorbent for high sulfur content cathode in lithium-sulfur batteries. J. Power Sources 2018, 400, 572–579.

35

Balamurugan, J.; Thanh, T. D.; Kim, N. H.; Lee, J. H. Facile synthesis of 3D hierarchical N-doped graphene nanosheet/cobalt encapsulated carbon nanotubes for high energy density asymmetric supercapacitors. J. Mater. Chem. A 2016, 4, 9555–9565.

36

Zhou, T. H.; Lv, W.; Li, J.; Zhou, G. M.; Zhao, Y.; Fan, S. X.; Liu, B. L.; Li, B. H.; Kang, F. Y.; Yang, Q. H. Twinborn TiO2–TiN heterostructures enabling smooth trapping-diffusion-conversion of polysulfides towards ultralong life lithium-sulfur batteries. Energy Environ. Sci. 2017, 10, 1694–1703.

37

Xu, Z. L.; Lin, S. H.; Onofrio, N.; Zhou, L. M.; Shi, F. Y.; Lu, W.; Kang, K.; Zhang, Q.; Lau, S. P. Exceptional catalytic effects of black phosphorus quantum dots in shuttling-free lithium sulfur batteries. Nat. Commun. 2018, 9, 4164.

38

He, B.; Li, W. C.; Zhang, Y.; Yu, X. F.; Zhang, B. S.; Li, F.; Lu, A. H. Paragenesis BN/CNTs hybrid as a monoclinic sulfur host for high rate and ultra-long life lithium–sulfur battery. J. Mater. Chem. A 2018, 6, 24194–24200.

Nano Research
Pages 1193-1197
Cite this article:
Yu X-F, Tian D-X, Li W-C, et al. One-pot synthesis of highly conductive nickel-rich phosphide/CNTs hybrid as a polar sulfur host for high-rate and long-cycle Li-S battery. Nano Research, 2019, 12(5): 1193-1197. https://doi.org/10.1007/s12274-019-2381-0
Topics:

820

Views

61

Crossref

N/A

Web of Science

59

Scopus

9

CSCD

Altmetrics

Received: 03 January 2019
Revised: 25 February 2019
Accepted: 12 March 2019
Published: 02 April 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return