AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Towards maximized utilization of iridium for the acidic oxygen evolution reaction

Marc Ledendecker1,§( )Simon Geiger1,§Katharina Hengge1Joohyun Lim1Serhiy Cherevko3Andrea M. Mingers1Daniel Göhl1Guilherme V. Fortunato1,5Daniel Jalalpoor2Ferdi Schüth2Christina Scheu1Karl J. J. Mayrhofer1,3,4( )
Department of Interface Chemistry and Surface EngineeringNanoanalytics and Interfaces Max-Planck-Institut für Eisenforschung GmbH40237Düsseldorf, Germany
Department of Heterogeneous CatalysisMax-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der Ruhr, Germany
Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11)Forschungszentrum Jülich91058Erlangen, Germany
Department of Chemical and Biological EngineeringFriedrich-Alexander-Universität Erlangen-Nürnberg91058Erlangen, Germany
Institute of ChemistryUniversidade Federal de Mato Grosso do Sul; Av. Senador Filinto Muller, 1555Campo Grande, MS79074-460Brazil

§ Marc Ledendecker and Simon Geiger contributed equally to this work

Show Author Information

Graphical Abstract

Abstract

The reduction in noble metal content for efficient oxygen evolution catalysis is a crucial aspect towards the large scale commercialisation of polymer electrolyte membrane electrolyzers. Since catalytic stability and activity are inversely related, long service lifetime still demands large amounts of low-abundant and expensive iridium. In this manuscript we elaborate on the concept of maximizing the utilisation of iridium for the oxygen evolution reaction. By combining different tin oxide based support materials with liquid atomic layer deposition of iridium oxide, new possibilities are opened up to grow thin layers of iridium oxide with tuneable noble metal amounts. In-situ, time- and potential-resolved dissolution experiments reveal how the stability of the substrate and the catalyst layer thickness directly affect the activity and stability of deposited iridium oxide. Based on our results, we elaborate on strategies how to obtain stable and active catalysts with maximized iridium utilisation for the oxygen evolution reaction and demonstrate how the activity and durability can be tailored correspondingly. Our results highlight the potential of utilizing thin noble metal films with earth abundant support materials for future catalytic applications in the energy sector.

Electronic Supplementary Material

Download File(s)
12274_2019_2383_MOESM1_ESM.pdf (3.7 MB)

References

1

Kasian, O.; Geiger, S.; Stock, P.; Polymeros, G.; Breitbach, B.; Savan, A.; Ludwig, A.; Cherevko, S.; Mayrhofer, K. J. J. On the origin of the improved ruthenium stability in RuO2-IrO2 mixed oxides. J. Electrochem. Soc. 2016, 163, F3099-F3104.

2

Cherevko, S.; Zeradjanin, A. R.; Topalov, A. A.; Kulyk, N.; Katsounaros, I.; Mayrhofer, K. J. J. Dissolution of noble metals during oxygen evolution in acidic media. ChemCatChem 2014, 6, 2219-2223.

3

Geiger, S.; Kasian, O.; Ledendecker, M.; Pizzutilo, E.; Mingers, A. M.; Fu, W. T.; Diaz-Morales, O.; Li, Z. Z.; Oellers, T.; Fruchter, L. et al. The stability number as a metric for electrocatalyst stability benchmarking. Nat. Catal. 2018, 1, 508-515.

4

Cherevko, S.; Geiger, S.; Kasian, O.; Kulyk, N.; Grote, J. P.; Savan, A.; Shrestha, B. R.; Merzlikin, S.; Breitbach, B.; Ludwig, A. et al. Oxygen and hydrogen evolution reactions on Ru, RuO2, Ir, and IrO2 thin film electrodes in acidic and alkaline electrolytes: A comparative study on activity and stability. Catal. Today 2016, 262, 170-180.

5

Seitz, L. C.; Dickens, C. F.; Nishio, K.; Hikita, Y.; Montoya, J.; Doyle, A.; Kirk, C.; Vojvodic, A.; Hwang, H. Y.; Norskov, J. K. et al. A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction. Science 2016, 353, 1011-1014.

6

Diaz-Morales, O.; Raaijman, S.; Kortlever, R.; Kooyman, P. J.; Wezendonk, T.; Gascon, J.; Fu, W. T.; Koper, M. T. M. Iridium-based double perovskites for efficient water oxidation in acid media. Nat. Commun. 2016, 7, 12363.

7

Sardar, K.; Petrucco, E.; Hiley, C. I.; Sharman, J. D. B.; Wells, P. P.; Russell, A. E.; Kashtiban, R. J.; Sloan, J.; Walton, R. I. Water-splitting electrocatalysis in acid conditions using ruthenate-iridate pyrochlores. Angew. Chem. , Int. Ed. 2014, 53, 10960-10964.

8

Sun, W.; Liu, J. Y.; Gong, X. Q.; Zaman, W. Q.; Cao, L. M.; Yang, J. OER activity manipulated by IrO6 coordination geometry: An insight from pyrochlore iridates. Sci. Rep. 2016, 6, 38429.

9

Sun, W.; Song, Y.; Gong, X. Q.; Cao, L. M.; Yang, J. Hollandite structure Kx≈0.25IrO2 catalyst with Highly efficient oxygen evolution reaction. ACS Appl. Mater. Interfaces 2016, 8, 820-826.

10

Ledendecker, M.; Krick Calderón, S.; Papp, C.; Steinrück, H. P.; Antonietti, M.; Shalom, M. The synthesis of nanostructured Ni5P4 films and their use as a non-noble bifunctional electrocatalyst for full water splitting. Angew. Chem. , Int. Ed. 2015, 54, 12361-12365.

11

Ledendecker, M.; Mondschein, J. S.; Kasian, O.; Geiger, S.; Göhl, D.; Schalenbach, M.; Zeradjanin, A.; Cherevko, S.; Schaak, R. E.; Mayrhofer, K. Stability and activity of non-noble-metal-based catalysts toward the hydrogen evolution reaction. Angew. Chem. , Int. Ed. 2017, 56, 9767-9771.

12

Schalenbach, M.; Speck, F. D.; Ledendecker, M.; Kasian, O.; Goehl, D.; Mingers, A. M.; Breitbach, B.; Springer, H.; Cherevko, S.; Mayrhofer, K. J. J. Nickel-molybdenum alloy catalysts for the hydrogen evolution reaction: Activity and stability revised. Electrochim. Acta 2018, 259, 1154-1161.

13

Oh, H. S.; Nong, H. N.; Reier, T.; Bergmann, A.; Gliech, M.; de Araújo, J. F.; Willinger, E.; Schlögl, R.; Teschner, D.; Strasser, P. Electrochemical catalyst-support effects and their stabilizing role for IrOx nanoparticle catalysts during the oxygen evolution reaction. J. Am. Chem. Soc. 2016, 138, 12552-12563.

14

Strasser, P.; Koh, S.; Anniyev, T.; Greeley, J.; More, K.; Yu, C. F.; Liu, Z. C.; Kaya, S.; Nordlund, D.; Ogasawara, H. et al. Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts. Nat. Chem. 2010, 2, 454-460.

15

Stamenkovic, V. R.; Mun, B. S.; Arenz, M.; Mayrhofer, K. J. J.; Lucas, C. A.; Wang, G. F.; Ross, P. N.; Markovic, N. M. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat. Mater. 2007, 6, 241-247.

16

Stamenkovic, V.; Mun, B. S.; Mayrhofer, K. J. J.; Ross, P. N.; Markovic, N. M.; Rossmeisl, J.; Greeley, J.; Nørskov, J. K. Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure. Angew. Chem. 2006, 118, 2963-2967.

17

Hsieh, Y. C.; Zhang, Y.; Su, D.; Volkov, V.; Si, R.; Wu, L. J.; Zhu, Y. M.; An, W.; Liu, P.; He, P. et al. Ordered bilayer ruthenium-platinum core-shell nanoparticles as carbon monoxide-tolerant fuel cell catalysts. Nat. Commun. 2013, 4, 2466.

18

Wang, L.; Gao, W. P.; Liu, Z. Y.; Zeng, Z. H.; Liu, Y. F.; Giroux, M.; Chi, M. F.; Wang, G. F.; Greeley, J.; Pan, X. Q. et al. Core-shell nanostructured cobalt-platinum electrocatalysts with enhanced durability. ACS Catal. 2018, 8, 35-42.

19

Wang, J. X.; Inada, H.; Wu, L. J.; Zhu, Y. M.; Choi, Y.; Liu, P.; Zhou, W. P.; Adzic, R. R. Oxygen reduction on well-defined core−shell nanocatalysts: Particle size, Facet, and Pt shell thickness effects. J. Am. Chem. Soc. 2009, 131, 17298-17302.

20

Geiger, S.; Kasian, O.; Mingers, A. M.; Mayrhofer, K. J. J.; Cherevko, S. Stability limits of tin-based electrocatalyst supports. Sci. Rep. 2017, 7, 4595.

21

Nong, H. N.; Oh, H. S.; Reier, T.; Willinger, E.; Willinger, M. G.; Petkov, V.; Teschner, D.; Strasser, P. Oxide-supported IrNiOx core-shell particles as efficient, cost-effective, and stable catalysts for electrochemical water splitting. Angew. Chem. , Int. Ed. 2015, 54, 2975-2979.

22

Oh, H. S.; Nong, H. N.; Reier, T.; Gliech, M.; Strasser, P. Oxide-supported Ir nanodendrites with high activity and durability for the oxygen evolution reaction in acid PEM water electrolyzers. Chem. Sci. 2015, 6, 3321-3328.

23

Puthiyapura, V. K.; Mamlouk, M.; Pasupathi, S.; Pollet, B. G.; Scott, K. Physical and electrochemical evaluation of ATO supported IrO2 catalyst for proton exchange membrane water electrolyser. J. Power Sources 2014, 269, 451-460.

24

Puthiyapura, V. K.; Pasupathi, S.; Su, H. N.; Liu, X. T.; Pollet, B.; Scott, K. Investigation of supported IrO2 as electrocatalyst for the oxygen evolution reaction in proton exchange membrane water electrolyser. Int. J. Hydrogen Energy 2014, 39, 1905-1913.

25

Kadakia, K. S.; Jampani, P. H.; Velikokhatnyi, O. I.; Datta, M. K.; Park, S. K.; Hong, D. H.; Chung, S. J.; Kumta, P. N. Nanostructured F doped IrO2 electro-catalyst powders for PEM based water electrolysis. J. Power Sources 2014, 269, 855-865.

26

Velikokhatnyi, O. I.; Kadakia, K.; Datta, M. K.; Kumta, P. N. Fluorine-doped IrO2: A potential electrocatalyst for water electrolysis. J. Phys. Chem. C 2013, 117, 20542-20547.

27

Kadakia, K.; Datta, M. K.; Velikokhatnyi, O. I.; Jampani, P.; Park, S. K.; Saha, P.; Poston, J. A.; Manivannan, A.; Kumta, P. N. Novel (Ir, Sn, Nb)O2 anode electrocatalysts with reduced noble metal content for PEM based water electrolysis. Int. J. Hydrogen Energy 2012, 37, 3001-3013.

28

Vesborg, P. C. K.; Jaramillo, T. F. Addressing the terawatt challenge: Scalability in the supply of chemical elements for renewable energy. RSC Adv. 2012, 2, 7933-7947.

29

García-Melchor, M.; Vilella, L.; López, N.; Vojvodic, A. Computationally probing the performance of hybrid, heterogeneous, and homogeneous iridium-based catalysts for water oxidation. ChemCatChem 2016, 8, 1792-1798.

30

Schley, N. D.; Blakemore, J. D.; Subbaiyan, N. K.; Incarvito, C. D.; D'Souza, F.; Crabtree, R. H.; Brudvig, G. W. Distinguishing homogeneous from heterogeneous catalysis in electrode-driven water oxidation with molecular iridium complexes. J. Am. Chem. Soc. 2011, 133, 10473-10481.

31

Sheehan, S. W.; Thomsen, J. M.; Hintermair, U.; Crabtree, R. H.; Brudvig, G. W.; Schmuttenmaer, C. A. A molecular catalyst for water oxidation that binds to metal oxide surfaces. Nat. Commun. 2015, 6, 6469.

32

Thomsen, J. M.; Sheehan, S. W.; Hashmi, S. M.; Campos, J.; Hintermair, U.; Crabtree, R. H.; Brudvig, G. W. Electrochemical activation of Cp* iridium complexes for electrode-driven water-oxidation catalysis. J. Am. Chem. Soc. 2014, 136, 13826-13834.

33

Hull, J. F.; Balcells, D.; Blakemore, J. D.; Incarvito, C. D.; Eisenstein, O.; Brudvig, G. W.; Crabtree, R. H. Highly active and robust Cp* iridium complexes for catalytic water oxidation. J. Am. Chem. Soc. 2009, 131, 8730-8731.

34

Hetterscheid, D. G. H.; Reek, J. N. H. Me2-NHC based robust Ir catalyst for efficient water oxidation. Chem. Commun. 2011, 47, 2712-2714.

35

Hintermair, U.; Sheehan, S. W.; Parent, A. R.; Ess, D. H.; Richens, D. T.; Vaccaro, P. H.; Brudvig, G. W.; Crabtree, R. H. Precursor transformation during molecular oxidation catalysis with organometallic iridium complexes. J. Am. Chem. Soc. 2013, 135, 10837-10851.

36

Sheehan, S. W.; Thomsen, J. M.; Hintermair, U.; Crabtree, R. H.; Brudvig, G. W.; Schmuttenmaer, C. A. A molecular catalyst for water oxidation that binds to metal oxide surfaces. Nat. Commun. 2015, 6, 6469.

37

Saruyama, M.; Kim, S.; Nishino, T.; Sakamoto, M.; Haruta, M.; Kurata, H.; Akiyama, S.; Yamada, T.; Domen, K.; Teranishi, T. Phase-segregated NiPx@FePyOz core@shell nanoparticles: Ready-to-use nanocatalysts for electro- and photo-catalytic water oxidation through in situ activation by structural transformation and spontaneous ligand removal. Chem. Sci. 2018, 9, 4830-4836.

38

Pizzutilo, E.; Knossalla, J.; Geiger, S.; Grote, J. P.; Polymeros, G.; Baldizzone, C.; Mezzavilla, S.; Ledendecker, M.; Mingers, A.; Cherevko, S. et al. The space confinement approach using hollow graphitic spheres to unveil activity and stability of Pt-Co nanocatalysts for PEMFC. Adv. Energy Mater. 2017, 7, 1700835.

39

De Pauli, C. P.; Trasatti, S. Electrochemical surface characterization of IrO2 + SnO2 mixed oxide electrocatalysts. J. Electroanal. Chem. 1995, 396, 161-168.

40

Wu, Y. L.; Döhler, D.; Barr, M.; Oks, E.; Wolf, M.; Santinacci, L.; Bachmann, J. Atomic layer deposition from dissolved precursors. Nano Lett. 2015, 15, 6379-6385.

41

Reier, T.; Teschner, D.; Lunkenbein, T.; Bergmann, A.; Selve, S.; Kraehnert, R.; Schlögl, R.; Strasser, P. Electrocatalytic oxygen evolution on iridium oxide: Uncovering catalyst-substrate interactions and active iridium oxide species. J. Electrochem. Soc. 2014, 161, F876-F882.

42

Gottesfeld, S.; Srinivasan, S. Electrochemical and optical studies of thick oxide layers on iridium and their electrocatalytic activities for the oxygen evolution reaction. J. Electroanal. Chem. Interfacial Electrochem. 1978, 86, 89-104.

43

Geiger, S.; Kasian, O.; Shrestha, B. R.; Mingers, A. M.; Mayrhofer, K. J. J.; Cherevko, S. Activity and stability of electrochemically and thermally treated iridium for the oxygen evolution reaction. J. Electrochem. Soc. 2016, 163, F3132-F3138.

44

Lodi, G.; De Battisti, A.; Benedetti, A.; Fagherazzi, G.; Kristof, J. Formation of iridium metal in thermally prepared iridium dioxide coatings. J. Electroanal. Chem. Interfacial Electrochem. 1988, 256, 441-445.

45

Hu, W.; Chen, S. L. Grain size effect of IrO2 nanocatalysts for the oxygen evolution reaction. Wuhan Univ. J. Nat. Sci. 2013, 18, 289-294.

46

Trasatti, S. Electrocatalysis in the anodic evolution of oxygen and chlorine. Electrochim. Acta 1984, 29, 1503-1512.

47

Kötz, R.; Neff, H.; Stucki, S. Anodic iridium oxide films: XPS‐studies of oxidation state changes and O2 evolution. J. Electrochem. Soc. 1984, 131, 72-77.

48

Pfeifer, V.; Jones, T. E.; Velasco Vélez, J. J.; Massué, C.; Greiner, M. T.; Arrigo, R.; Teschner, D.; Girgsdies, F.; Scherzer, M.; Allan, J. et al. The electronic structure of iridium oxide electrodes active in water splitting. Phys. Chem. Chem. Phys. 2016, 18, 2292-2296.

49

Kim, J. S.; Friend, R. H.; Cacialli, F. Surface energy and polarity of treated indium-tin-oxide anodes for polymer light-emitting diodes studied by contact-angle measurements. J. Appl. Phys. 1999, 86, 2774-2778.

50

Matz, O.; Calatayud, M. Periodic DFT study of rutile IrO2: Surface reactivity and catechol adsorption. J. Phys. Chem. C 2017, 121, 13135-13143.

51

Sen, F. G.; Kinaci, A.; Narayanan, B.; Gray, S. K.; Davis, M. J.; Sankaranarayanan, S. K. R. S.; Chan, M. K. Y. Towards accurate prediction of catalytic activity in IrO2 nanoclusters via first principles-based variable charge force field. J. Mater. Chem. A 2015, 3, 18970-18982.

52

Wang, X.; Yin, Q. Q.; Tang, Z. Z.; Liu, X. H.; Tang, D.; Lin, W. The nature of phase separation in Ir-Sn-O ternary oxide electrocatalyst. J. Eur. Ceram. Soc. 2013, 33, 3045-3052.

53

Nong, H. N.; Reier, T.; Oh, H. S.; Gliech, M.; Paciok, P.; Vu, T. H. T.; Teschner, D.; Heggen, M.; Petkov, V.; Schlögl, R. et al. A unique oxygen ligand environment facilitates water oxidation in hole-doped IrNiOx core-shell electrocatalysts. Nat. Catal. 2018, 1, 841-851.

54

Wang, Y. Y.; Zhang, Y. Q.; Liu, Z. J.; Xie, C.; Feng, S.; Liu, D. D.; Shao, M. F.; Wang, S. Y. Layered double hydroxide nanosheets with multiple vacancies obtained by dry exfoliation as highly efficient oxygen evolution electrocatalysts. Angew. Chem. , Int. Ed. 2017, 56, 5867-5871.

55

Yan, D. F.; Li, Y. X.; Huo, J.; Chen, R.; Dai, L. M.; Wang, S. Y. Defect chemistry of nonprecious-metal electrocatalysts for oxygen reactions. Adv. Mater. 2017, 29, 1606459.

56

Klemm, S. O.; Topalov, A. A.; Laska, C. A.; Mayrhofer, K. J. J. Coupling of a high throughput microelectrochemical cell with online multielemental trace analysis by ICP-MS. Electrochem. Commun. 2011, 13, 1533-1535.

Nano Research
Pages 2275-2280
Cite this article:
Ledendecker M, Geiger S, Hengge K, et al. Towards maximized utilization of iridium for the acidic oxygen evolution reaction. Nano Research, 2019, 12(9): 2275-2280. https://doi.org/10.1007/s12274-019-2383-y
Topics:
Part of a topical collection:

1206

Views

56

Downloads

98

Crossref

N/A

Web of Science

95

Scopus

10

CSCD

Altmetrics

Received: 21 December 2018
Revised: 12 March 2019
Accepted: 13 March 2019
Published: 28 March 2019
© The author(s) 2019

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return