Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Magnetization reversal processes of hexagonal dense arrays of bi-segmented Ni and Fe50Co50 nanowires consisting of two well defined diameters (45 and 80 nm) have been studied. The nanowires were grown inside of tailored pores of anodic alumina templates by combined anodization, atomic layer deposition (ALD) and electrodeposition techniques. The experiments have allowed to identify their two-step magnetization reversal process ascribed to the respective segments of different diameter. This is concluded from the differential susceptibility observed in the hysteresis loops, contrary to those for nanowires with homogeneous diameter. These results are also confirmed by the first-order reversal curve (FORC) distribution diagrams, where an elongation parallel to the interaction axis around two coercive field values is obtained, which is correlated to the difference in diameter of the two segments. This well-defined two-step magnetization reversal process through the nanowire diameter design is thought to be very useful for the advanced control of the remagnetization in arrays of magnetic multidomain systems.
Allwood, D. A.; Xiong, G.; Faulkner, C. C.; Atkinson, D.; Petit, D.; Cowburn, R. P. Magnetic domain-wall logic. Science 2005, 309, 1688–1692.
Allwood, D. A.; Xiong, G.; Cowburn, R. P. Writing and erasing data in magnetic domain wall logic systems. J. Appl. Phys. 2006, 100, 123908.
Parkin, S. S. P.; Hayashi, M.; Thomas, L. Magnetic domain-wall racetrack memory. Science 2008, 320, 190–194.
Hayashi, M.; Thomas, L.; Moriya, R.; Rettner, C.; Parkin, S. S. P. Current-controlled magnetic domain-wall nanowire shift register. Science 2008, 320, 209–211.
Kou, X. M.; Fan, X.; Dumas, R. K.; Lu, Q.; Zhang, Y. P.; Zhu, H.; Zhang, X. K.; Liu, K.; Xiao, J. Q. Memory effect in magnetic nanowire arrays. Adv. Mater. 2011, 23, 1393–1397.
Lee, D. J.; Kim, E.; Kim, D.; Park, J.; Hong, S. Nano-storage wires. ACS Nano 2013, 7, 6906–6913.
Grutter, A. J.; Krycka, K. L.; Tartakovskaya, E. V.; Borchers, J. A.; Reddy, K. S. M.; Ortega, E.; Ponce, A.; Stadler, B. J. H. Complex three-dimensional magnetic ordering in segmented nanowire arrays. ACS Nano 2017, 11, 8311– 8319.
Sergelius, P.; Moreno, J. M. M.; Rahimi, W.; Waleczek, M.; Zierold, R.; Görlitz, D.; Nielsch, K. Electrochemical synthesis of highly ordered nanowires with a rectangular cross section using an in-plane nanochannel array. Nanotechnology 2014, 25, 504002.
Pitzschel, K.; Moreno, J. M. M.; Escrig, J.; Albrecht, O.; Nielsch, K.; Bachmann, J. Controlled introduction of diameter modulations in arrayed magnetic iron oxide nanotubes. ACS Nano 2009, 3, 3463–3468.
Esmaeily, A. S.; Venkatesan, M.; Razavian, A. S.; Coey, J. M. D. Diameter-modulated ferromagnetic CoFe nanowires. J. Appl. Phys. 2013, 113, 17A327.
Minguez-Bacho, I.; Rodriguez-López, S.; Vázquez, M.; Hernández-Vélez, M.; Nielsch, K. Electrochemical synthesis and magnetic characterization of periodically modulated Co nanowires. Nanotechnology 2014, 25, 145301.
Prida, V. M.; García, J.; Iglesias, L.; Vega, V.; Görlitz, D.; Nielsch, K.; Barriga-Castro, E. D.; Mendoza-Reséndez, R.; Ponce, A.; Luna, C. Electroplating and magnetostructural characterization of multisegmented Co54Ni46/Co85Ni15 nanowires from single electrochemical bath in anodic alumina templates. Nanoscale Res. Lett. 2013, 8, 263.
Méndez, M.; González, S.; Vega, V.; Teixeira, J. M.; Hernando, B.; Luna, C.; Prida, V. M. Ni-Co alloy and multisegmented Ni/Co nanowire arrays modulated in composition: Structural characterization and magnetic properties. Crystals 2017, 7, 66.
Salem, M. S.; Tejo, F.; Zierold, R.; Sergelius, P.; Moreno, J. M. M.; Goerlitz, D.; Nielsch, K.; Escrig, J. Composition and diameter modulation of magnetic nanowire arrays fabricated by a novel approach. Nanotechnology 2018, 29, 065602.
Neumann, R. F.; Bahiana, M.; Allende, S.; Altbir, D.; Görlitz, D.; Nielsch, K. Tailoring the nucleation of domain walls along multi-segmented cylindrical nanoelements. Nanotechnology 2015, 26, 215701.
Méndez, M.; Vega, V.; González, S.; Caballero-Flores, R.; García, J.; Prida, V. M. Effect of sharp diameter geometrical modulation on the magnetization reversal of bi-segmented FeNi nanowires. Nanomaterials 2018, 8, 595.
Bochmann, S.; Döhler, D.; Trapp, B.; Staňo M.; Fruchart, O.; Bachmann J. Preparation and physical properties of soft magnetic nickel-cobalt three-segmented nanowires. J. Appl. Phys. 2018, 124, 163907.
Pitzschel, K.; Bachmann, J.; Martens, S.; Montero-Moreno, J. M.; Kimling, J.; Meier, G.; Escrig, J.; Nielsch, K.; Görlitz, D. Magnetic reversal of cylindrical nickel nanowires with modulated diameters. J. Appl. Phys. 2011, 109, 033907.
Burn, D. M.; Arac, E.; Atkinson, D. Magnetization switching and domain-wall propagation behavior in edge-modulated ferromagnetic nanowire structures. Phys. Rev. B 2013, 88, 104422.
Salem, M. S.; Sergelius, P.; Corona, R. M.; Escrig, J.; Görlitz D.; Nielsch, K. Magnetic properties of cylindrical diameter modulated Ni80Fe20 nanowires: Interaction and coercive fields. Nanoscale 2013, 5, 3941–3947.
Zeng, H.; Michalski, S.; Kirby, R. D.; Sellmeyer, D. J.; Menon, L.; Bandyopadhyay, S. Effects of surface morphology on magnetic properties of Ni nanowire arrays in self-ordered porous alumina. J. Phys. Condens. Mat. 2002, 14, 715–721.
Kumar, A.; Fähler, S.; Schlörb, H.; Leistner, K.; Schultz, L. Competition between shape anisotropy and magnetoelastic anisotropy in Ni nanowires electrodeposited within alumina templates. Phys. Rev. B 2006, 73, 064421.
Bran, C.; Palmero, E. M.; Li, Z. A.; del Real, R. P.; Spasova, M.; Farle, M.; Vázquez, M. Correlation between structure and magnetic properties in CoxFe100-x nanowires: The roles of composition and wire diameter. J. Phys. D: Appl. Phys. 2015, 48, 145304.
Palmero, E. M.; Bran, C.; del Real, R. P.; Vázquez, M. Vortex domain wall propagation in periodically modulated diameter FeCoCu nanowire as determined by the magneto-optical Kerr effect. Nanotechnology 2015, 26, 461001.
Bran, C.; Berganza, E.; Palmero, E. M.; Fernandez-Roldan, J. A.; del Real, R. P.; Aballe, L.; Foerster, M.; Asenjo, A.; Fraile Rodriguez, A.; Vazquez, M. Spin configuration of cylindrical bamboo-like magnetic nanowires. J. Mater. Chem. C 2016, 4, 978–984.
Hertel, R.; Kirschner, J. Magnetization reversal dynamics in nickel nanowires. Phys B: Condens. Matter 2004, 343, 206–210.
Ivanov, Y. P.; Vázquez, M.; Chubykalo-Fesenko, O. Magnetic reversal modes in cylindrical nanowires. J. Phys. D: Appl. Phys. 2013, 46, 485001.
Bran, C.; Ivanov, Y. P.; García, J.; del Real, R. P.; Prida, V. M.; Chubykalo-Fesenko, O.; Vazquez, M. Tuning the magnetization reversal process of FeCoCu nanowire arrays by thermal annealing. J. Appl. Phys. 2013, 114, 043908.
Vock, S.; Hengst, C.; Wolf, M.; Tschulik, K.; Uhlemann, M.; Sasvári, Z.; Makarov, D.; Schmidt, O. G.; Schultz, L.; Neu, V. Magnetic vortex observation in FeCo nanowires by quantitative magnetic force microscopy. Appl. Phys. Lett. 2014, 105, 172409.
Spinu, L.; Stancu, A.; Radu, C.; Li, F.; Wiley, J. B. Method for magnetic characterization of nanowire structures. IEEE Trans. Magn. 2004, 40, 2116– 2118.
Béron, F.; Clime, L.; Ciureanu, M.; Ménard, D.; Cochrane, R. W.; Yelon, A. Magnetostatic interactions and coercivities of ferromagnetic soft nanowires in uniform length arrays. J. Nanosci. Nanotechnol. 2008, 8, 2944–2954.
Navas, D.; Torrejon, J.; Béron, F.; Redondo, C.; Batallan, F.; Toperverg, B. P.; Devishvili, A.; Sierra, B.; Castaño, F.; Pirota, K. R. et al. Magnetization reversal and exchange bias effects in hard/soft ferromagnetic bilayers with orthogonal anisotropies. New J. Phys. 2012, 14, 113001.
Proenca, M. P.; Merazzo, K. J.; Vivas, L. G.; Leitao, D. C.; Sousa, C. T.; Ventura, J.; Araujo, J. P.; Vazquez, M. Co nanostructures in ordered templates: Comparative FORC analysis. Nanotechnology 2013, 24, 475703.
Almasi-Kashi, M.; Ramazani, A.; Golafshan, E.; Arefpour, M.; Jafari-Khamse, E. First order reversal curve investigation of the hard and soft magnetic phases of annealed CoFeCu nanowire arrays. Phys B: Condens. Matter 2013, 429, 46–51.
Palmero, E. M.; Béron, F.; Bran, C.; del Real, R. P.; Vázquez, M. Magnetic interactions in compositionally modulated nanowire arrays. Nanotechnology 2016, 27, 435705.
Béron, F.; Pirota, K. R.; Vega, V.; Prida, V. M.; Fernández, A.; Hernando, B. Knobel, M. An effective method to probe local magnetostatic properties in a nanometric FePd antidot array. New J. Phys. 2011, 13, 013035.
Bachmann, J.; Zierold, R.; Chong, Y. T.; Hauert, R.; Sturm, C.; Schmidt-Grund, R.; Rheinländer, B.; Grundmann, M.; Gösele, U.; Nielsch, K. A practical, self-catalytic, atomic layer deposition of silicon dioxide. Angew. Chem., Int. Ed. 2008, 47, 6177–6179.
Dobrotă, C. I.; Stancu, A. What does a first-order reversal curve diagram really mean? A study case: Array of ferromagnetic nanowires. J. Appl. Phys. 2013, 113, 043928.
Barandiaran, J. M.; Vázquez, M.; Hernando, A.; González, J.; Rivero, G. Distribution of the magnetic anisotropy in amorphous alloys ribbons. IEEE Trans. Magn. 1989, 25, 3330–3332.
Vega, V.; Böhnert, T.; Martens, S.; Waleczek, M.; Montero-Moreno, J. M.; Görlitz, D.; Prida, V. M.; Nielsch, K. Tuning the magnetic anisotropy of Co–Ni nanowires: Comparison between single nanowires and nanowire arrays in hard-anodic aluminum oxide membranes. Nanotechnology 2012, 23, 465709.
Béron, F.; Ménard, D.; Yelon, A. First-order reversal curve diagrams of magnetic entities with mean interaction field: A physical analysis perspective. J. Appl. Phys. 2008, 103, 07D908.
Béron, F.; Carignan, L. P.; Ménard, D.; Yelon, A. Extracting individual properties from global behaviour: First-order reversal curve method applied to magnetic nanowire arrays. In Electrodeposited Nanowires and Their Applications; Lupu, N., Ed.; IntechOpen: Vienna, 2010; pp 167–188.
Rotaru, A.; Lim, J. H.; Lenormand, D.; Diaconu, A.; Wiley, J. B.; Postolache, P.; Stancu, A.; Spinu, L. Interactions and reversal-field memory in complex magnetic nanowire arrays. Phys. Rev. B 2011, 84, 134431.
Samanifar, S.; Almasi Kashi, M.; Ramazani, A.; Alikhani, M. Reversal modes in FeCoNi nanowire arrays: Correlation between magnetostatic interactions and nanowires length. J. Magn. Magn. Mater. 2015, 378, 73–83.
Sergelius, P.; Fernandez, J. G.; Martens, S.; Zocher, M.; Böhnert, T.; Martinez, V. V.; de la Prida, V. M.; Görlitz, D.; Nielsch, K. Statistical magnetometry on isolated NiCo nanowires and nanowire arrays: A comparative study. J. Phys. D: Appl. Phys. 2016, 49, 145005.
Raposo, V.; Zazo, M.; Flores, A. G.; García, J.; Vega, V.; Iñiguez, J.; Prida, V. M. Ferromagnetic resonance in low interacting permalloy nanowire arrays. J. Appl. Phys. 2016, 119, 143903.
Pike, C. R.; Ross, C. A.; Scalettar R. T.; Zimanyi, G. First-order reversal curve diagram analysis of a perpendicular nickel nanopillar array. Phys. Rev. B 2005, 71, 134407.
García, J.; Vega, V.; Thomas, A.; Prida, V. M.; Nielsch, K. Two-step magnetization reversal FORC fingerprint of coupled bi-segmented Ni/Co magnetic nanowire arrays. Nanomaterials 2018, 8, 548.