AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

CdS magic-size clusters exhibiting one sharp ultraviolet absorption singlet peaking at 361 nm

Junbin Tang1Juan Hui1Meng Zhang1Hongsong Fan2Nelson Rowell3Wen Huang4Yingnan Jiang5Xiaoqin Chen2( )Kui Yu1,2,6( )
Institute of Atomic and Molecular Physics,Sichuan University,Chengdu,610065,China;
Engineering Research Center in Biomaterials,Sichuan University,Chengdu,610065,China;
Metrology Research Centre,National Research Council of Canada,Ottawa, Ontario K1A 0R6,Canada;
Laboratory of Ethnopharmacology,West China School of Medicine, Sichuan University,Chengdu,610065,China;
Jilin Ginseng Academy,Changchun University of Chinese Medicine,Changchun,130117,China;
State Key Laboratory of Polymer Materials Engineering,Sichuan University,Chengdu,610065,China;
Show Author Information

Graphical Abstract

Abstract

We report, for the first time, the synthesis of CdS magic-size clusters (MSCs) which exhibit a single sharp absorption peaking at ~ 361 nm, along with sharp band edge photoemission at ~ 377 nm and broad trap emission peaking at ~ 490 nm. These MSCs are produced in a single-ensemble form without the contamination of conventional quantum dots (QDs) and/or other-bandgap clusters. They are denoted as MSC-361. We present the details of several controlled syntheses done in oleylamine (OLA), using Cd(NO3)2 or Cd(OAc)2 as a Cd source and thioacetamide (TAA) or elementary sulfur (S) as a S source. A high synthetic reproducibility of the reaction of Cd(NO3)2 and TAA to single-ensemble MSC-361 is achieved, the product of which is not contaminated by other bandgap clusters and/or QDs. In some cases, the reaction product exhibits an additional absorption peak at ~ 322 nm. We demonstrate that the two peaks, at 361 and 322 nm, do not evolve synchronously. Therefore, the 322 nm peak is not a higher order electronic transition of MSC-361, but due to the presence of another ensemble, namely MSC-322. The present study suggests that there is an outstanding need for the development of a physical model to narrow the knowledge gap regarding the electronic structure in these colloidal semiconductor CdS MSCs.

Electronic Supplementary Material

Download File(s)
12274_2019_2386_MOESM1_ESM.pdf (3.5 MB)

References

1

Zhang, H. T.; Hyun, B. R.; Wise, F. W.; Robinson, R. D. A generic method for rational scalable synthesis of monodisperse metal sulfide nanocrystals. Nano Lett. 2012, 12, 5856-5860.

2

Wang, Y.; Zhou, Y.; Zhang, Y; Buhro, W. E. Magic-size Ⅱ−Ⅵ nanoclusters as synthons for flat colloidal nanocrystals. Inorg. Chem. 2015, 54, 1165-1177.

3

Nevers, D. R.; Williamson, C. B.; Hanrath, T.; Robinson, R. D. Surface chemistry of cadmium sulfide magic-sized clusters: A window into ligand-nanoparticle interactions. Chem. Commun. 2017, 53, 2866-2869.

4

Son, J. S.; Park, K.; Kwon, S. G.; Yang, J.; Choi, M. K.; Kim, J.; Yu, J. H.; Joo, J.; Hyeon, T. Dimension-controlled synthesis of CdS nanocrystals: From 0D quantum dots to 2D nanoplates. Small 2012, 8, 2394-2402.

5

Li, Z.; Qin, H. Y.; Guzun, D.; Benamara, M.; Salamo, G.; Peng, X. G. Uniform thickness and colloidal-stable CdS quantum disks with tunable thickness: Synthesis and properties. Nano Res. 2012, 5, 337-351.

6

Li, M. J.; Ouyang, J. Y.; Ratcliffe, C. I.; Pietri, L.; Wu, X. H.; Leek, D. M.; Moudrakovski, I.; Lin, Q.; Yang, B.; Yu, K. CdS magic-sized nanocrystals exhibiting bright band gap photoemission via thermodynamically driven formation. ACS Nano 2009, 3, 3832-3838.

7

Zhu, T. T.; Zhang, B. W.; Zhang, J.; Lu, J.; Fan, H. S.; Rowell, N.; Ripmeester, J. A.; Han, S.; Yu, K. Two-step nucleation of CdS magic-size nanocluster MSC-311. Chem. Mater. 2017, 29, 5727-5735.

8

Zhang, B. W.; Zhu, T. T.; Ou, M. Y.; Rowell, N.; Fan, H. S.; Han, J. T.; Tan, L.; Dove, M. T.; Ren, Y.; Zuo, X. B. et al. Thermally-induced reversible structural isomerization in colloidal semiconductor CdS magic-size clusters. Nat. Commun. 2018, 9, 2499.

9

Zhang, J.; Hao, X. Y.; Rowell, N.; Kreouzis, T.; Han, S.; Fan, H. S.; Zhang, C. C.; Hu, C. W.; Zhang, M.; Yu, K. Individual pathways in the formation of magic-size clusters and conventional quantum dots. J. Phys. Chem. Lett. 2018, 9, 3660-3666.

10

Nevers, D. R.; Williamson, C. B.; Savitzky, B. H.; Hadar, I.; Banin, U.; Kourkoutis, L. F.; Hanrath, T.; Robinson, R. D. Mesophase formation stabilizes high-purity magic-sized clusters. J. Am. Chem. Soc. 2018, 140, 3652-3662.

11

Yu, W. W.; Peng X. G. Formation of high-quality CdS and other Ⅱ-Ⅵ semiconductor nanocrystals in noncoordinating solvents: Tunable reactivity of monomers. Angew. Chem., Int. Ed. 2002, 41, 2368-2371.

12

Pan, D. C.; Ji, X. L.; An, L. J.; Lu, Y. F. Observation of nucleation and growth of CdS nanocrystals in a two-phase system. Chem. Mater. 2008, 20, 3560-3566.

13

Ouyang, J. Y.; Kuijper, J.; Brot, S.; Kingston, D.; Wu, X. H.; Leek, D. M.; Hu, M. Z.; Ripmeester, J. A.; Yu, K. Photoluminescent colloidal CdS nanocrystals with high quality via noninjection one-pot synthesis in 1-octadecene. J. Phys. Chem. C 2009, 113, 7579-7593.

14

Yu, Q. Y.; Liu, C. Y. Study of magic-size-cluster mediated formation of CdS nanocrystals: Properties of the magic-size clusters and mechanism implication. J. Phys. Chem. C 2009, 113, 12766-12771.

15

Zanella, M.; Abbasi, A. Z.; Schaper, A. K.; Parak, W. J. Discontinuous growth of Ⅱ-Ⅵ semiconductor nanocrystals from different materials. J. Phys. Chem. C 2010, 114, 6205-6215.

16

Fojtik, A.; Weller, H.; Koch, U.; Henglein, A. Photo-chemistry of colloidal metal sulfides 8. photo-physics of extremely small CdS particles: Q-state CdS and magic agglomeration numbers. Ber. Bunsenges. Phys. Chem. 1984, 88, 969-977.

17

Vossmeyer, T.; Katsikas, L.; Giersig, M.; Popovic, I. G.; Diesner, K.; Chemseddine, A.; Eychmueller, A.; Weller, H. CdS nanoclusters: Synthesis, characterization, size dependent oscillator strength, temperature shift of the excitonic transition energy, and reversible absorbance shift. J. Phys. Chem. 1994, 98, 7665-7673.

18

Samanta, A; Deng, Z. T.; Liu, Y.; Yan, H. A perspective on functionalizing colloidal quantum dots with DNA. Nano Res. 2013, 6, 853-870.

19

Zhang, L. B.; Jean, S. R.; Ahmed, S.; Aldridge, P. M.; Li, X. Y.; Fan, F. J.; Sargent, E. H.; Kelley, S. O. Multifunctional quantum dot DNA hydrogels. Nat. Commun. 2017, 8, 381.

20

Luo, W. N.; Jiu, T. G.; Kuang, C. Y.; Li, B. R.; Lu, F. S.; Fang, J. F. Dithiol treatments enhancing the efficiency of hybrid solar cells based on PTB7 and CdSe nanorods. Nano Res. 2015, 8, 3045-3053.

21

Yang, Z. Y.; Fan, J. Z.; Proppe, A. H.; de Arquer, F. P. G.; Rossouw, D.; Voznyy, O.; Lan, X. Z.; Liu, M.; Walters, G.; Quintero-Bermudez, R. et al. Mixed-quantum-dot solar cells. Nat. Commun. 2017, 8, 1325.

22

Empedocles, S A.; Neuhauser, R.; Shimizu, K. T.; Bawendi, M. G. Photoluminescence from single semiconductor nanostructures. Adv. Mater. 1999, 11, 1243-1256.

23

Cui, J.; Beyler, A. P.; Marshall, L. F.; Chen, O.; Harris, D. K.; Wanger, D. D.; Brokmann, X.; Bawendi, M. G. Direct probe of spectral inhomogeneity reveals synthetic tunability of single-nanocrystal spectral linewidths. Nat. Chem. 2013, 5, 602-606.

24

Kasuya, A.; Sivamohan, R.; Barnakov, Y. A.; Dmitruk, I. M.; Nirasawa, T.; Romanyuk, V. R.; Kumar, V.; Mamykin, S. V.; Tohji, K.; Jeyadevan, B. et al. Ultra-stable nanoparticles of CdSe revealed from mass spectrometry. Nat. Mater. 2004, 3, 99-102.

25

Beecher, A. N.; Yang, X. H.; Palmer, J. H.; LaGrassa, A. L.; Juhas, P.; Billinge, S. J. L.; Owen, J. S. Atomic structures and gram scale synthesis of three tetrahedral quantum dots. J. Am. Chem. Soc. 2014, 136, 10645-10653.

26

Ekimov, A. I.; Hache, F.; Schanne-Klein, M. C.; Ricard, D.; Flytzanis, C.; Kudryavtsev, I. A.; Yazeva, T. V.; Rodina, A. V.; Efros, A. L. Absorption and intensity-dependent photoluminescence measurements on CdSe quantum dots: Assignment of the first electronic transitions. J. Opt. Soc. Am. B 1993, 10, 100-107.

27

Norris, D. J.; Bawendi, M. G. Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots. Phys. Rev. B 1996, 53, 16338-16346.

28

Liu, M. Y.; Wang, K.; Wang, L. X.; Han, S.; Fan, H. S.; Rowell, N.; Ripmeester, J. A.; Renoud, R.; Bian, F. G.; Zeng, J. R. et al. Probing intermediates of the induction period prior to nucleation and growth of semiconductor quantum dots. Nat. Commun. 2017, 8, 15467.

29

Wang, L. X.; Hui, J.; Tang, J. B.; Rowell, N.; Zhang, B. W.; Zhu, T. T.; Zhang, M.; Hao, X. Y.; Fan, H. S.; Zeng, J. R. et al. Precursor self-assembly identified as a general pathway for colloidal semiconductor magic-size clusters. Adv. Sci. 2018, 5, 1800632.

30

LaMer, V. K.; Dinegar, R. H. Theory, production and mechanism of formation of monodispersed hydrosols. J. Am. Chem. Soc. 1950, 72, 4847-4854.

31

van Embden, J.; Mulvaney, P. Nucleation and growth of CdSe nanocrystals in a binary ligand system. Langmuir 2005, 21, 10226-10233.

32

Steckel, J. S.; Yen, B. K. H.; Oertel, D. C.; Bawendi, M. G. On the mechanism of lead chalcogenide nanocrystal formation. J. Am. Chem. Soc. 2006, 128, 13032-13033.

33

García-Rodríguez, R.; Hendricks, M. P.; Cossairt, B. M.; Liu, H. T.; Owen, J. S. Conversion reactions of cadmium chalcogenide nanocrystal precursors. Chem. Mater. 2013, 25, 1233-1249.

34

Yu, K.; Liu, X. Y.; Chen, Q. Y.; Yang, H. Q.; Yang, M. L.; Wang, X. Q.; Wang, X.; Cao, H.; Whitfield, D. M.; Hu, C. W. et al. Mechanistic study of the role of primary amines in precursor conversions to semiconductor nanocrystals at low temperature. Angew. Chem. , Int. Ed. 2014, 53, 6898-6904.

35

Yu, K.; Liu, X. Y.; Qi, T.; Yang, H. Q.; Whitfield, D. M.; Chen, Q. Y.; Huisman, E. J. C.; Hu, C. W. General low-temperature reaction pathway from precursors to monomers before nucleation of compound semiconductor nanocrystals. Nat. Commun. 2016, 7, 12223.

36

Xie, L. S.; Shen, Y.; Franke, D.; Sebastián, V.; Bawendi, M. G.; Jensen, K. F. Characterization of indium phosphide quantum dot growth intermediates using MALDI-TOF mass spectrometry. J. Am. Chem. Soc. 2016, 138, 13469-13472.

37

Bowers, M. J.; McBride, J. R.; Rosenthal, S. J. White-light emission from magic-sized cadmium selenide nanocrystals. J. Am. Chem. Soc. 2005, 127, 15378-15379.

38

Cossairt, B. M.; Owen, J. S. CdSe clusters: At the interface of small molecules and quantum dots. Chem. Mater. 2011, 23, 3114-3119.

39

Rosson, T. E.; Claiborne, S. M.; McBride, J. R.; Stratton, B. S.; Rosenthal, S. J. Bright white light emission from ultrasmall cadmium selenide nanocrystals. J. Am. Chem. Soc. 2012, 134, 8006-8009.

40

Dolai, S.; Nimmala, P. R.; Mandal, M.; Muhoberac, B. B.; Dria, K.; Dass, A.; Sardar, R. Isolation of bright blue light-emitting CdSe nanocrystals with 6.5 kDa core in gram scale: High photoluminescence efficiency controlled by surface ligand chemistry. Chem. Mater. 2014, 26, 1278-1285.

41

Yu, W. W.; Qu, L. H.; Guo, W. Z.; Peng, X. G. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mater. 2003, 15, 2854-2860.

42

Jasieniak, J.; Smith, L.; van Embden, J.; Mulvaney, P. Re-examination of the size-dependent absorption properties of CdSe quantum dots. J. Phys. Chem. C 2009, 113, 19468-19474.

43

Ouyang, J. Y.; Zaman, M. B.; Yan, F. J.; Johnston, D.; Li, G.; Wu, X. H.; Leek, D.; Ratcliffe, C. I.; Ripmeester, J. A.; Yu, K. Multiple families of magic-sized CdSe nanocrystals with strong bandgap photoluminescence via noninjection one-pot syntheses. J. Phys. Chem. C 2008, 112, 13805-13811.

44

Yu, K.; Ouyang, J. Y.; Zaman, M. B.; Johnston, D.; Yan, F. J.; Li, G.; Ratcliffe, C. I.; Leek, D. M.; Wu, X. H.; Stupak, J. et al. Single-sized CdSe nanocrystals with bandgap photoemission via a noninjection one-pot approach. J. Phys. Chem. C 2009, 113, 3390-3401.

45

Yu, K.; Hu, M. Z.; Wang, R. B.; Le Piolet, M.; Frotey, M.; Zaman, M. B.; Wu, X. H.; Leek, D. M.; Tao, Y.; Wilkinson, D. et al. Thermodynamic equilibrium-driven formation of single-sized nanocrystals: Reaction media tuning CdSe magic-sized versus regular quantum dots. J. Phys. Chem. C 2010, 114, 3329-3339.

46

Liu, Y. H.; Wang, F. D.; Wang, Y. Y.; Gibbons, P. C.; Buhro, W. E. Lamellar assembly of cadmium selenide nanoclusters into quantum belts. J. Am. Chem. Soc. 2011, 133, 17005-17013.

47

Yu, K. CdSe magic-sized nuclei, magic-sized nanoclusters and regular nanocrystals: Monomer effects on nucleation and growth. Adv. Mater. 2012, 24, 1123-1132.

48

Wang, Y. Y.; Liu, Y. H.; Zhang, Y.; Wang, F. D.; Kowalski, P. J.; Rohrs, H. W.; Loomis, R. A.; Gross, M. L.; Buhro, W. E. Isolation of the magic-size CdSe nanoclusters[(CdSe)13(n-octylamine)13] and [(CdSe)13(oleylamine)13]. Angew. Chem. , Int. Ed. 2012, 51, 6154-6157.

49

Dolai, S.; Dutta, P.; Muhoberac, B. B.; Irving, C. D.; Sardar, R. Mechanistic study of the formation of bright white light-emitting ultrasmall CdSe nanocrystals: Role of phosphine free selenium precursors. Chem. Mater. 2015, 27, 1057-1070.

50

Zhu, D. K.; Hui, J.; Rowell, N.; Liu, Y. Y.; Chen, Q. Y.; Steegemans, T.; Fan, H. S.; Zhang, M.; Yu, K. Interpreting the ultraviolet absorption in the spectrum of 415 nm-bandgap CdSe magic-size clusters. J. Phys. Chem. Lett. 2018, 9, 2818-2824.

51

Hsieh, T. E.; Yang, T. W.; Hsieh, C. Y.; Huang, S. J.; Yeh, Y. Q.; Chen, C. H.; Li, E. Y.; Liu, Y. H. Unraveling the structure of magic-size (CdSe)13 cluster pairs. Chem. Mater. 2018, 30, 5468-5477.

52

Liu, Y. Y.; Willis, M.; Rowell, N.; Luo, W. Z.; Fan, H. S.; Han, S.; Yu, K. Effect of small molecule additives in the prenucleation stage of semiconductor CdSe quantum dots. J. Phys. Chem. Lett. 2018, 9, 6356-6363.

53

Wang, R. B.; Ouyang, J. Y.; Nikolaus, S.; Brestaz, L.; Zaman, M. B.; Wu, X. H.; Leek, D.; Ratcliffe, C. I.; Yu, K. Single-sized colloidal CdTe nanocrystals with strong bandgap photoluminescence. Chem. Commun. 2009, 962-964.

Nano Research
Pages 1437-1444
Cite this article:
Tang J, Hui J, Zhang M, et al. CdS magic-size clusters exhibiting one sharp ultraviolet absorption singlet peaking at 361 nm. Nano Research, 2019, 12(6): 1437-1444. https://doi.org/10.1007/s12274-019-2386-8
Topics:
Part of a topical collection:

748

Views

11

Crossref

N/A

Web of Science

10

Scopus

2

CSCD

Altmetrics

Received: 06 February 2019
Revised: 17 March 2019
Accepted: 18 March 2019
Published: 29 May 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return