AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Pressure-dependent phase transition of 2D layered silicon telluride (Si2Te3) and manganese intercalated silicon telluride

Virginia L. JohnsonAuddy AnilaoKristie J. Koski( )
Department of ChemistryUniversity of California, Davis, DavisCA95616USA
Show Author Information

Graphical Abstract

Abstract

Two-dimensional (2D) layered silicon telluride (Si2Te3) nanocrystals were compressed to 12 GPa using diamond anvil cell techniques. Optical measurements show a color change from transparent red to opaque black indicating a semiconductor-to-metal phase transition. Raman scattering was used to observe the stiffening of the crystal lattice and subsequent phase behavior. A possible phase transition was observed at 9.5 ± 0.5 GPa evidenced by the disappearance of the A1g stretching mode. Si2Te3 was intercalated with elemental manganese to ~ 1 at.%. Intercalation lowers the pressure of the proposed phase transition to 7.5 ± 1 GPa. Raman modes show both phonon stiffening and phonon softening, suggesting negative linear compressibility. These results provide fundamental insight into the high-pressure optical phonon behavior of silicon telluride and illuminate how a specific electron-donating intercalant can chemically alter pressure-dependent optical phonon behavior.

Electronic Supplementary Material

Download File(s)
12274_2019_2387_MOESM1_ESM.pdf (957.5 KB)

References

1

Keuleyan, S.; Wang, M. J.; Chung, F. R.; Commons, J.; Koski, K. J. A silicon-based two-dimensional chalcogenide: Growth of Si2Te3 nanoribbons and nanoplates. Nano Lett. 2015, 15, 2285-2290.

2

Wang, M. J.; Lahti, G.; Williams, D.; Koski, K. J. Chemically tunable full spectrum optical properties of 2D silicon telluride nanoplates. ACS Nano 2018, 12, 6163-6169.

3

Wu, K. Y.; Sun, W. W.; Jiang, Y.; Chen, J. Y.; Li, L.; Cao, C. B.; Shi, S. W.; Shen, X.; Cui, J. B. Structure and photoluminescence study of silicon based two-dimensional Si2Te3 nanostructures. J. Appl. Phys. 2017, 122, 075701.

4

Chen, J. Y.; Wu, K. Y.; Shen, X.; Hoang, T. B.; Cui, J. B. Probing the dynamics of photoexcited carriers in Si2Te3 nanowires. J. Appl. Phys. 2018, 125, 024306.

5

Wu, K. Y.; Cui, J. B. Morphology control of Si2Te3 nanostructures synthesized by CVD. J. Mater. Sci. Mater. Electron. 2018, 29, 15643-15648.

6

Wu, K. Y.; Chen, J. Y.; Shen, X.; Cui, J. B. Resistive switching in Si2Te3 nanowires. AIP Adv. 2018, 8, 125008.

7

Bailey, L.G. Preparation and properties of silicon telluride. J. Phys. Chem. Solids 1966, 27, 1593-1598.

8

Ploog, K.; Stetter, W.; Nowitzki, A.; Schönherr, E. Crystal growth and structure determination of silicon telluride Si2Te3. Mater. Res. Bull. 1976, 11, 1147-1153.

9

Ziegler, K.; Birkholz, U. Photoelectric properties of Si2Te3 single crystals. Phys. Status Solidi A 1977, 39, 467-475.

10

Juneja, R.; Pandey, T.; Singh, A. K. High thermoelectric performance in n-doped silicon-based chalcogenide Si2Te3. Chem. Mater. 2017, 29, 3723-3730.

11

Wang, Q.; Quhe, R.; Guan, Z. X.; Wu, L. Y.; Bi, J. Y.; Guan, P. F.; Lei, M.; Lu, P. F. High n-type and p-type thermoelectric performance of two-dimensional SiTe at high temperature. RSC Adv. 2018, 8, 21280-21287.

12

Wang, M. J.; Williams, D.; Lahti, G.; Teshima, S.; Dominguez Aguilar, D.; Perry, R.; Koski, K. J. Chemical intercalation of heavy metal, semimetal, and semiconductor atoms into 2D layered chalcogenides. 2D Mater. 2018, 5, 045005.

13

Steinberg, S.; Stoffel, R. P.; Dronskowski, R. Search for the mysterious SiTe-An examination of the binary Si-Te system using first-principles-based methods. Cryst. Growth Des. 2016, 16, 6152-6155.

14

Göbgen, K. C.; Steinberg, S.; Dronskowski, R. Revisiting the Si-Te system: SiTe2 finally found by means of experimental and quantum-chemical techniques. Inorg. Chem. 2017, 56, 11398-11405.

15

Ma, Y.; Kou, L.; Dai, Y.; Heine, T. Proposed two-dimensional topological insulator in SiTe. Phys. Rev. B. 2016, 94, 201104.

16

Mishra, R.; Mishra, P. K.; Phapale, S.; Babu, P. D.; Sastry, P. U.; Ravikumar, G.; Yadav, A. K. Evidences of the existence of SiTe2 crystalline phase and a proposed new Si-Te phase diagram. J. Solid State Chem. 2016, 237, 234-241.

17

Shen, X.; Puzyrev, Y. S.; Combs, C.; Pantelides, S. T. Variability of structural and electronic properties of bulk and monolayer Si2Te3. Appl. Phys. Lett. 2016, 109, 113104.

18

Powell, A. V. Intercalation compounds of low-dimensional transition metal chalcogenides. Annu. Rep. Sect. C: Phys. Chem. 1993, 90, 177-213.

19

Zwick, U.; Rieder, K. H. Infrared and Raman study of Si2Te3. Z. Phys. B: Condens. Matter 1976, 25, 319-322.

20

Mernagh, T. P.; Liu, L. G. Pressure dependence of Raman phonons of some group IVA (C, Si, and Ge) elements. J. Phys. Chem. Solids 1991, 52, 507-512.

21

Marini, C.; Chermisi, D.; Lavagnini, M.; Di Castro, D.; Petrillo, C.; Degiorgi, L.; Scandolo, S.; Postorino, P. High-pressure phases of crystalline tellurium: A combined Raman and ab initio study. Phys. Rev. B 2012, 86, 064103.

22

Baughman, R. H.; Stafström, S.; Cui, C. X.; Dantas, S. O. Materials with negative compressibilities in one or more dimensions. Science 1998, 279, 1522-1524.

23

Cairns, A. B.; Goodwin, A. L. Negative linear compressibility. Phys. Chem. Chem. Phys. 2015, 17, 20449-20465.

24

Loa, I.; Syassen, K.; Kremer, R. K. Vibrational properties of NaV2O5 under high pressure studied by Raman spectroscopy. Solid State Commun. 1999, 112, 681-685.

Nano Research
Pages 2373-2377
Cite this article:
Johnson VL, Anilao A, Koski KJ. Pressure-dependent phase transition of 2D layered silicon telluride (Si2Te3) and manganese intercalated silicon telluride. Nano Research, 2019, 12(9): 2373-2377. https://doi.org/10.1007/s12274-019-2387-7
Topics:
Part of a topical collection:

784

Views

16

Crossref

N/A

Web of Science

16

Scopus

0

CSCD

Altmetrics

Received: 08 January 2019
Revised: 18 March 2019
Accepted: 19 March 2019
Published: 02 April 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return