AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Ternary mesoporous cobalt-iron-nickel oxide efficiently catalyzing oxygen/hydrogen evolution reactions and overall water splitting

Lulu Han1Limin Guo2,3( )Chaoqun Dong1Chi Zhang4Hui Gao1Jiazheng Niu1Zhangquan Peng3,4( )Zhonghua Zhang1,4( )
Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education)School of Materials Science and EngineeringShandong UniversityJingshi Road 17923Jinan250061China
Jilin Engineering Normal UniversityChangchun130052China
State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
School of Applied Physics and MaterialsWuyi University22 Dongcheng VillageJiangmen529020China
Show Author Information

Graphical Abstract

Abstract

Among various efficient electrocatalysts for water splitting, CoFe and NiFe-based oxides/hydroxides are typically promising candidates thanks to their extraordinary activities towards oxygen evolution reaction (OER). However, the endeavor to advance their performance towards overall water splitting has been largely impeded by the limited activities for hydrogen evolution reaction (HER). Herein, we present a CoFeNi ternary metal-based oxide (CoFeNi-O) with impressive hierarchical bimodal channel nanostructures, which was synthesized via a facile one-step dealloying strategy. The oxide shows superior catalytic activities towards both HER and OER in alkaline solution due to the alloying effect and the intrinsic hierarchical porous structure. CoFeNi-O loaded on glass carbon electrodes only requires the overpotentials as low as 230 and 278 mV to achieve the OER current densities of 10 and 100 mA·cm-2, respectively. In particular, extremely low overpotentials of 200 and 57.9 mV are sufficient enough for Ni foam-supported CoFeNi-O to drive the current density of 10 mA·cm-2 towards OER and HER respectively, which is comparable with or even better than the already-developed state-of-the-art non-noble metal oxide based catalysts. Benefiting from the bifunctionalities of CoFeNi-O, an alkaline electrolyzer constructed by the Ni foam-supported CoFeNi-O electrodes as both the anode and the cathode can deliver a current density of 10 mA·cm-2 at a fairly low cell-voltage of 1.558 V. In view of its electrocatalytic merits together with the facile and cost-effective dealloying route, CoFeNi-O is envisioned as a promising catalyst for future production of sustainable energy resources.

Electronic Supplementary Material

Download File(s)
12274_2019_2389_MOESM1_ESM.pdf (2.6 MB)

References

1

Lewis, N. S.; Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. USA 2006, 103, 15729-15735.

2

Kamat, P. V. Meeting the clean energy demand: Nanostructure architectures for solar energy conversion. J. Phys. Chem. C 2007, 111, 2834-2860.

3

Schlapbach, L.; Züttel, A. Hydrogen-storage materials for mobile applications. Nature 2001, 414, 353-358.

4

Gardner, G.; Al-Sharab, J.; Danilovic, N.; Go, Y. B.; Ayers, K.; Greenblatt, M.; Dismukes, G. C. Structural basis for differing electrocatalytic water oxidation by the cubic, layered and spinel forms of lithium cobalt oxides. Energy Environ. Sci. 2016, 9, 184-192.

5

Lee, Y.; Suntivich, J.; May, K. J.; Perry, E. E.; Shao-Horn, Y. Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J. Phys. Chem. Lett. 2012, 3, 399-404.

6

Frydendal, R.; Paoli, E. A.; Knudsen, B. P.; Wickman, B.; Malacrida, P.; Stephens, I. E. L.; Chorkendorff I. Benchmarking the stability of oxygen evolution reaction catalysts: The importance of monitoring mass losses. ChemElectroChem 2014, 1, 2075-2081.

7

McCrory, C. C. L.; Jung, S.; Peters, J. C.; Jaramillo, T. F. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 2013, 135, 16977-16987.

8

Antolini, E. Iridium as catalyst and cocatalyst for oxygen evolution/reduction in acidic polymer electrolyte membrane electrolyzers and fuel cells. ACS Catal. 2014, 4, 1426-1440.

9

De Chialvo, M. R. G.; Chialvo, A. C. Oxygen evolution reaction on NixCo(3-x)O4 electrodes with spinel structure. Electrochim. Acta 1993, 38, 2247-2252.

10

Suntivich, J.; May, K. J.; Gasteiger, H. A.; Goodenough, J. B.; Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 2011, 334, 1383-1385.

11

Lee, M.; Oh, H.; Cho, M. K.; Ahn, J. P.; Hwang, Y. J.; Min, B. K. Activation of a Ni electrocatalyst through spontaneous transformation of nickel sulfide to nickel hydroxide in an oxygen evolution reaction. Appl. Catal. B: Environ. 2018, 233, 130-135.

12

Nsanzimana, J. M. V.; Peng, Y. C.; Xu, Y. Y.; Thia, L.; Wang, C.; Xia, B. Y.; Wang, X. An efficient and earth-abundant oxygen-evolving electrocatalyst based on amorphous metal borides. Adv. Energy Mater. 2018, 8, 1701475.

13

Faber, M. S.; Dziedzic, R.; Lukowski, M. A.; Kaiser, N. S.; Ding, Q.; Jin, S. High-performance electrocatalysis using metallic cobalt pyrite (CoS2) micro- and nanostructures. J. Am. Chem. Soc. 2014, 136, 10053-10061.

14

Li, Y. G.; Wang, H. L.; Xie, L. M.; Liang, Y. Y.; Hong, G. S.; Dai, H. J. MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2011, 133, 7296-7299.

15

Zhou, W. J.; Wu, X. J.; Cao, X. H.; Huang, X.; Tan, C. L.; Tian, J.; Liu, H.; Wang, J. Y.; Zhang, H. Ni3S2 nanorods/Ni foam composite electrode with low overpotential for electrocatalytic oxygen evolution. Energy Environ. Sci. 2013, 6, 2921-2924.

16

Kong, D. S.; Wang, H. T.; Lu, Z. Y.; Cui, Y. CoSe2 nanoparticles grown on carbon fiber paper: An efficient and stable electrocatalyst for hydrogen evolution reaction. J. Am. Chem. Soc. 2014, 136, 4897-4900.

17

Kibsgaard, J.; Tsai, C.; Chan, K.; Benck, J. D.; Nørskov, J. K.; Abild-Pedersen, F.; Jaramillo, T. F. Designing an improved transition metal phosphide catalyst for hydrogen evolution using experimental and theoretical trends. Energy Environ. Sci. 2015, 8, 3022-3029.

18

He, P. L.; Yu, X. Y.; Lou, X. W. Carbon-incorporated nickel-cobalt mixed metal phosphide nanoboxes with enhanced electrocatalytic activity for oxygen evolution. Angew. Chem. 2017, 129, 3955-3958.

19

Lu, X. F.; Gu, L. F.; Wang, J. W.; Wu, J. X.; Liao, P. Q.; Li, G. R. Bimetal-organic framework derived CoFe2O4/C porous hybrid nanorod arrays as high-performance electrocatalysts for oxygen evolution reaction. Adv. Mater. 2017, 29, 1604437.

20

Kumar, M.; Awasthi, R.; Sinha, A. S. K.; Singh, R. N. New ternary Fe, Co, and Mo mixed oxide electrocatalysts for oxygen evolution. Int. J. Hydrog. Energy 2011, 36, 8831-8838.

21

Su, C.; Wang, W.; Chen, Y. B.; Yang, G. M.; Xu, X. M.; Tadé, M. O.; Shao, Z. P. SrCo0.9Ti0.1O3-δ as a new electrocatalyst for the oxygen evolution reaction in alkaline electrolyte with stable performance. ACS Appl. Mater. Interfaces 2015, 7, 17663-17670.

22

Wang, L. X.; Geng, J.; Wang, W. H.; Yuan, C.; Kuai, L.; Geng, B. Y. Facile synthesis of Fe/Ni bimetallic oxide solid-solution nanoparticles with superior electrocatalytic activity for oxygen evolution reaction. Nano Res. 2015, 8, 3815-3822.

23

Song, F.; Hu, X. L. Ultrathin cobalt-manganese layered double hydroxide is an efficient oxygen evolution catalyst. J. Am. Chem. Soc. 2014, 136, 16481-16484.

24

Abellán, G.; Carrasco, J. A.; Coronado, E.; Romero, J.; Varela, M. Alkoxide-intercalated CoFe-layered double hydroxides as precursors of colloidal nanosheet suspensions: Structural, magnetic and electrochemical properties. J. Mater. Chem. C 2014, 2, 3723-3731.

25

Zhuang, L. Z.; Jia, Y.; He, T. W.; Du, A. J.; Yan, X. C.; Ge, L.; Zhu, Z. H.; Yao, X. D. Tuning oxygen vacancies in two-dimensional iron-cobalt oxide nanosheets through hydrogenation for enhanced oxygen evolution activity. Nano Res. 2018, 11, 3509-3518.

26

Jiang, N.; You, B.; Sheng, M. L.; Sun, Y. J. Electrodeposited cobalt-phosphorous-derived films as competent bifunctional catalysts for overall water splitting. Angew. Chem. 2015, 127, 6349-6352.

27

Bajdich, M.; García-Mota, M.; Vojvodic, A.; Norskov, J. K.; Bell, A. T. Theoretical investigation of the activity of cobalt oxides for the electrochemical oxidation of water. J. Am. Chem. Soc. 2013, 135, 13521-13530.

28

McCrory, C. C.; Jung, S.; Ferrer, I. M.; Chatman, S. M.; Peters, J. C.; Jaramillo, T. F. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J. Am. Chem. Soc. 2015, 137, 4347-4357.

29

Liao, P. L.; Keith, J. A.; Carter, E. A. Water oxidation on pure and doped hematite (0001) surfaces: Prediction of Co and Ni as effective dopants for electrocatalysis. J. Am. Chem. Soc. 2012, 134, 13296-13309.

30

Lewis, N. S. Research opportunities to advance solar energy utilization. Science 2016, 351, aad1920.

31

Gao, R.; Yan, D. P. Fast formation of single-unit-cell-thick and defect-rich layered double hydroxide nanosheets with highly enhanced oxygen evolution reaction for water splitting. Nano Res. 2018, 11, 1883-1894.

32

Wang, H. T.; Lee, H. W.; Deng, Y.; Lu, Z. Y.; Hsu, P. C.; Liu, Y. Y.; Lin, D. C.; Cui, Y. Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting. Nat. Commun. 2015, 6, 7261.

33

Zhou, D. J.; Cai, Z.; Bi, Y. M.; Tian, W. L.; Luo, M.; Zhang, Q.; Xie, Q. X.; Wang, J. D.; Li, Y. P.; Kuang, Y. et al. Effects of redox-active interlayer anions on the oxygen evolution reactivity of NiFe-layered double hydroxide nanosheets. Nano Res. 2018, 11, 1358-1368.

34

Li, X. M.; Hao, X. G.; Abudula, A.; Guan, G. Q. Nanostructured catalysts for electrochemical water splitting: Current state and prospects. J. Mater. Chem. A 2016, 4, 11973-12000.

35

Erlebacher, J.; Aziz, M. J.; Karma, A.; Dimitrov, N.; Sieradzki, K. Evolution of nanoporosity in dealloying. Nature 2001, 410, 450-453.

36

Lu, X. Y.; Yim, W. L.; Suryanto, B. H. R.; Zhao, C. Electrocatalytic oxygen evolution at surface-oxidized multiwall carbon nanotubes. J. Am. Chem. Soc. 2015, 137, 2901-2907.

37

Dixon, M. C.; Daniel, T. A.; Hieda, M.; Smilgies, D. M.; Chan, M. H. W.; Allara, D. L. Preparation, structure, and optical properties of nanoporous gold thin films. Langmuir 2007, 23, 2414-2422.

38

Thimmaiah, S.; Rajamathi, M.; Singh, N.; Bera, P.; Meldrum, F.; Chandrasekhar, N.; Seshadri, R. A solvothermal route to capped nanoparticles of γ-Fe2O3 and CoFe2O4. J. Mater. Chem. 2001, 11, 3215-3221.

39

Gu, Z. J.; Xiang, X.; Fan, G. L.; Li, F. Facile synthesis and characterization of cobalt ferrite nanocrystals via a simple reduction-oxidation route. J. Phys. Chem. C 2008, 112, 18459-18466.

40

Zeng, L. L.; Zhou, K.; Yang, L. J.; Du, G. J.; Liu, L. H.; Zhou, W. J. General approach of in situ etching and doping to synthesize a nickel-doped MxOy (M = Co, Mn, Fe) nanosheets array on nickel foam as large-sized electrodes for overall water splitting. ACS Appl. Energy Mater. 2018, 1, 6279-6287.

41

Yang, B.; Yu, L.; Yan, H. J.; Sun, Y. B.; Liu, Q.; Liu, J. Y.; Song, D. L.; Hu, S. X.; Yuan, Y.; Liu, L. H. et al. Fabrication of urchin-like NiCo2(CO3)1.5(OH)3@NiCo2S4 on Ni foam by an ion-exchange route and application to asymmetrical supercapacitors. J. Mater. Chem. A 2015, 3, 13308-13316.

42

McIntyre, N. S.; Cook, M. G. X-ray photoelectron studies on some oxides and hydroxides of cobalt, nickel, and copper. Anal. Chem. 1975, 47, 2208-2213.

43

Geng, J.; Kuai, L.; Kan, E. J.; Wang, Q.; Geng, B. Y. Precious-metal-free Co-Fe-O/rGO synergetic electrocatalysts for oxygen evolution reaction by a facile hydrothermal route. ChemSusChem 2015, 8, 659-664.

44

Kim, H.; Seo, D. H.; Kim, H.; Park, I.; Hong, J.; Park, K. Y.; Kang, K. Multicomponent effects on the crystal structures and electrochemical properties of spinel-structured M3O4 (M = Fe, Mn, Co) anodes in lithium rechargeable batteries. Chem. Maters. 2012, 24, 720-725.

45

Sivanantham, A.; Ganesan, P.; Shanmugam, S. Hierarchical NiCo2S4 nanowire arrays supported on Ni foam: An efficient and durable bifunctional electrocatalyst for oxygen and hydrogen evolution reactions. Adv. Funct. Mater. 2016, 26, 4661-4672.

46

Sutthiumporn, K.; Kawi, S. Promotional effect of alkaline earth over Ni-La2O3 catalyst for CO2 reforming of CH4: Role of surface oxygen species on H2 production and carbon suppression. Int. J. Hydrog. Energy 2011, 36, 14435-14446.

47

Lu, X. H.; Zeng, Y. X.; Yu, M. H.; Zhai, T.; Liang, C. L.; Xie, S. L.; Balogun, M. S.; Tong, Y. X. Oxygen-deficient hematite nanorods as high-performance and novel negative electrodes for flexible asymmetric supercapacitors. Adv. Mater. 2014, 26, 3148-3155.

48

Morales-Guio, C. G.; Liardet, L.; Hu, X. L. Oxidatively electrodeposited thin-film transition metal (oxy)hydroxides as oxygen evolution catalysts. J. Am. Chem. Soc. 2016, 138, 8946-8957.

49

Wang, A. L.; Xu, H.; Li, G. R. NiCoFe layered triple hydroxides with porous structures as high-performance electrocatalysts for overall water splitting. ACS Energy Lett. 2016, 1, 445-453.

50

Bao, J.; Zhang, X. D.; Fan, B.; Zhang, J. J.; Zhou, M.; Yang, W. L.; Hu, X.; Wang, H.; Pan, B. C.; Xie, Y. Ultrathin spinel-structured nanosheets rich in oxygen deficiencies for enhanced electrocatalytic water oxidation. Angew. Chem. , Int. Ed. 2015, 54, 7399-7404.

51

Cheng, G. H.; Kou, T. Y.; Zhang, J.; Si, C. H.; Gao, H.; Zhang, Z. H. O22-/O- functionalized oxygen-deficient Co3O4 nanorods as high performance supercapacitor electrodes and electrocatalysts towards water splitting. Nano Energy 2017, 38, 155-166.

52

Villarroel-Rocha, J.; Barrera, D.; Sapag, K. Introducing a self-consistent test and the corresponding modification in the Barrett, Joyner and Halenda method for pore-size determination. Micropor Mesopor Mater. 2014, 200, 68-78.

53

Liu, R. C.; Liang, F. L.; Zhou, W.; Yang, Y. S.; Zhu, Z. H. Calcium-doped lanthanum nickelate layered perovskite and nickel oxide nano-hybrid for highly efficient water oxidation. Nano Energy 2015, 12, 115-122.

54

Zhao, L. L; Cao, Q.; Wang, A. L.; Duan, J. Z.; Zhou, W. J.; Sang, Y. H.; Liu, H. Iron oxide embedded Titania nanowires—An active and stable electrocatalyst for oxygen evolution in acidic media. Nano Energy 2018, 45, 118-126.

55

Zeng, L.; Yang, L. J.; Lu, J.; Jia, J.; Yu, J. Y.; Deng, Y. Q.; Shao, M. F.; Zhou, W. J. One-step synthesis of Fe-Ni hydroxide nanosheets derived from bimetallic foam for efficient electrocatalytic oxygen evolution and overall water splitting. Chin. Chem. Lett. 2018, 29, 1875-1878.

56

Yu, M. Q.; Li, Y. H.; Yang, S.; Liu, P. F.; Pan, L. F.; Zhang, L.; Yang, H. G. Mn3O4 nano-octahedrons on Ni foam as an efficient three-dimensional oxygen evolution electrocatalyst. J. Mater. Chem. A 2015, 3, 14101-14104.

57

Han, L. L.; Dong, C. Q.; Zhang, C.; Gao, Y. L.; Zhang, J.; Gao, H.; Wang, Y.; Zhang, Z. H. Dealloying-directed synthesis of efficient mesoporous CoFe-based catalysts towards the oxygen evolution reaction and overall water splitting. Nanoscale 2017, 9, 16467-16475.

58

Ponce, J.; Rı́os, E.; Rehspringer, J. L.; Poillerat, G.; Chartier, P.; Gautier, J. L. Preparation of nickel aluminum-manganese spinel oxides NixAl1-xMn2O4 for oxygen electrocatalysis in alkaline medium: Comparison of properties stemming from different preparation methods. J. Solid State Chem. 1999, 145, 23-32.

59

Chen, J. Y. C.; Miller, J. T.; Gerken, J. B.; Stahl, S. S. Inverse spinel NiFeAlO4 as a highly active oxygen evolution electrocatalyst: Promotion of activity by a redox-inert metal ion. Energy Environ. Sci. 2014, 7, 1382-1386.

Nano Research
Pages 2281-2287
Cite this article:
Han L, Guo L, Dong C, et al. Ternary mesoporous cobalt-iron-nickel oxide efficiently catalyzing oxygen/hydrogen evolution reactions and overall water splitting. Nano Research, 2019, 12(9): 2281-2287. https://doi.org/10.1007/s12274-019-2389-5
Topics:
Part of a topical collection:

923

Views

62

Crossref

N/A

Web of Science

60

Scopus

7

CSCD

Altmetrics

Received: 06 January 2019
Revised: 18 March 2019
Accepted: 19 March 2019
Published: 02 April 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return