AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Reversible self-assembly of gold nanorods mediated by photoswitchable molecular adsorption

Qian WangDi LiJunyan XiaoFucheng GuoLimin Qi( )
Beijing National Laboratory for Molecular Sciences (BNLMS),College of Chemistry, Peking University,Beijing,100871,China;
Show Author Information

Graphical Abstract

Abstract

Stimuli-responsive self-assembly of nanoparticles represents a powerful strategy to achieve reconfigurable materials with novel functionalities and promising applications. In this regard, light-induced reversible self-assembly (LIRSA) of nanoparticles is most attractive but it is usually limited by the prerequisite yet cumbersome chemical functionalizations of the particle surface. Here we describe an innovative method to realize LIRSA of gold nanorods (GNRs) without surface functionalization through photoswitchable adsorption of an anionic azobenzene derivate AzoNa. The LIRSA of GNRs is caused by the reversible change between a nearly neutral state and a highly charged state of the GNRs arising from the photoswichable adsorption of AzoNa triggered by photoisomerization. The LIRSA behavior can be readily adjusted by changing the concentration of AzoNa and the aspect ratio of the GNRs. This new LIRSA strategy may provide a convenient and efficient route toward light-triggered reversibly reconfigurable nanomaterials.

Electronic Supplementary Material

Download File(s)
12274_2019_2393_MOESM1_ESM.pdf (4.8 MB)

References

1

Grzybowski, B. A.; Fitzner, K.; Paczesny, J.; Granick, S. From dynamic self-assembly to networked chemical systems. Chem. Soc. Rev. 2017, 46, 5647–5678.

2

Qian, Z. X.; Ginger, D. S. Reversibly reconfigurable colloidal plasmonic nanomaterials. J. Am. Chem. Soc. 2017, 139, 5266-5276.

3

Li, F. Y.; Lu, J. X.; Kong, X. Q.; Hyeon, T.; Ling, D. S. Dynamic nanoparticle assemblies for biomedical applications. Adv. Mater. 2017, 29, 1605897.

4

Li, D.; Qi, L. M. Self-assembly of inorganic nanoparticles mediated by host-guest interactions. Curr. Opin. Colloid Interface Sci. 2018, 35, 59-67.

5

Zhang, Q.; Wang, W. Z.; Yu, J. J.; Qu, D. H.; Tian, H. Dynamic self-assembly encodes a tri-stable Au–TiO2 photocatalyst. Adv. Mater. 2017, 29, 1604948.

6

Nie, Z. H.; Fava, D.; Kumacheva, E.; Zou, S.; Walker, G. C.; Rubinstein, M. Self-assembly of metal-polymer analogues of amphiphilic triblock copolymers. Nat. Mater. 2007, 6, 609–614.

7

Sánchez-Iglesias, A.; Claes, N.; Solís, D. M.; Taboada, J. M.; Bals, S.; Liz-Marzán, L. M.; Grzelczak, M. Reversible clustering of gold nanoparticles under confinement. Angew. Chem., Int. Ed. 2018, 57, 3183–3186.

8

Rao, A.; Roy, S.; Unnikrishnan, M.; Bhosale, S. S.; Devatha, G.; Pillai, P. P. Regulation of interparticle forces reveals controlled aggregation in charged nanoparticles. Chem. Mater. 2016, 28, 2348-2355.

9

Zhang, Q.; Qu, D. H.; Wang, Q. C.; Tian, H. Dual-mode controlled self-assembly of TiO2 nanoparticles through a cucurbit[8]uril-enhanced radical cation dimerization interaction. Angew. Chem., Int. Ed. 2015, 54, 15789–15793.

10

Gurunatha, K. L.; Fournier, A. C.; Urvoas, A.; Valerio-Lepiniec, M.; Marchi, V.; Minard, P.; Dujardin, E. Nanoparticles self-assembly driven by high affinity repeat protein pairing. ACS Nano 2016, 10, 3176–3185.

11

Borsley, S.; Kay, E. R. Dynamic covalent assembly and disassembly of nanoparticle aggregates. Chem. Commun. 2016, 52, 9117–9120.

12

Liu, Y. D.; Han, X. G.; He, L.; Yin, Y. D. Thermoresponsive assembly of charged gold nanoparticles and their reversible tuning of plasmon coupling. Angew. Chem., Int. Ed. 2012, 51, 6373–6377.

13

Nonappa; Haataja, J. S.; Timonen, J. V. I.; Malola, S.; Engelhardt, P.; Houbenov, N.; Lahtinen, M.; Häkkinen, H.; Ikkala, O. Reversible supracolloidal self-assembly of cobalt nanoparticles to hollow capsids and their superstructures. Angew. Chem., Int. Ed. 2017, 56, 6473–6477.

14

Yu, Y. X.; Yu, D.; Orme, C. A. Reversible, tunable, electric-field driven assembly of silver nanocrystal superlattices. Nano Lett. 2017, 17, 3862-3869.

15

Wang, M. S.; He, L.; Xu, W. J.; Wang, X.; Yin, Y. D. Magnetic assembly and field-tuning of ellipsoidal-nanoparticle-based colloidal photonic crystals. Angew. Chem., Int. Ed. 2015, 54, 7077–7081.

16

Klajn, R.; Bishop, K. J. M.; Grzybowski, B. A. Light-controlled self-assembly of reversible and irreversible nanoparticle suprastructures. Proc. Natl. Acad. Sci. USA 2007, 104, 10305–10309.

17

Yan, Y. Q.; Chen, J. I. L.; Ginger, D. S. Photoswitchable oligonucleotide-modified gold nanoparticles: Controlling hybridization stringency with photon dose. Nano Lett. 2012, 12, 2530-2536.

18

Kundu, P. K.; Samanta, D.; Leizrowice, R.; Margulis, B.; Zhao, H.; Börner, M.; Udayabhaskararao, T.; Manna, D.; Klajn, R. Light-controlled self-assembly of non-photoresponsive nanoparticles. Nat. Chem. 2015, 7, 646-652.

19

Chen, Y. H.; Wang, Z. W.; He, Y. J.; Yoon, Y. J.; Jung, J.; Zhang, G. Z.; Lin, Z. Q. Light-enabled reversible self-assembly and tunable optical properties of stable hairy nanoparticles. Proc. Natl. Acad. Sci. USA 2018, 115, E1391-E1400.

20

Lu, X. F.; Huang, Y. J.; Liu, B. Q.; Zhang, L.; Song, L. P.; Zhang, J. W.; Zhang, A. F.; Chen, T. Light-controlled shrinkage of large-area gold nanoparticle monolayer film for tunable SERS activity. Chem. Mater. 2018, 30, 1989-1997.

21

Manna, D.; Udayabhaskararao, T.; Zhao, H.; Klajn, R. Orthogonal light-induced self-assembly of nanoparticles using differently substituted azobenzenes. Angew. Chem., Int. Ed. 2015, 54, 12394–12397.

22

Zhao, H. B.; Sen, S.; Udayabhaskararao, T.; Sawczyk, M.; Kučanda, K.; Manna, D.; Kundu, P. K.; Lee, J. W.; Král, P.; Klajn, R. Reversible trapping and reaction acceleration within dynamically self-assembling nanoflasks. Nat. Nanotech. 2016, 11, 82–88.

23

He, H. B.; Feng, M.; Chen, Q. D.; Zhang, X. Q.; Zhan, H. B. Light-induced reversible self-assembly of gold nanoparticles surface-immobilized with coumarin ligands. Angew. Chem., Int. Ed. 2016, 55, 936–940.

24

Samanta, D.; Klajn, R. Aqueous light-controlled self-assembly of nanoparticles. Adv. Opt. Mater. 2016, 4, 1373–1377.

25

Lan, X.; Su, Z. M.; Zhou, Y. D.; Meyer, T.; Ke, Y. G.; Wang, Q. B.; Chiu, W.; Liu, N.; Zou, S. L.; Yan, H. et al. Programmable supra-assembly of a DNA surface adapter for tunable chiral directional self-assembly of gold nanorods. Angew. Chem., Int. Ed. 2017, 56, 14632–14636.

26

Lin, H. X.; Lee, S.; Sun, L.; Spellings, M.; Engel, M.; Glotzer, S. C.; Mirkin, C. A. Clathrate colloidal crystals. Science 2017, 355, 931–935.

27

Wang, Q.; Wang, Z. P.; Li, Z.; Xiao, J. Y.; Shan, H. Y.; Fang, Z. Y.; Qi, L. M. Controlled growth and shape-directed self-assembly of gold nanoarrows. Sci. Adv. 2017, 3, e1701183.

28

Han, B.; Shi, L.; Gao, X. Q.; Guo, J.; Hou, K.; Zheng, Y. L.; Tang, Z. Y. Ultra-stable silica-coated chiral Au-nanorod assemblies: Core–shell nanostructures with enhanced chiroptical properties. Nano Res. 2016, 9, 451–457.

29

Sun, Z. H.; Ni, W. H.; Yang, Z.; Kou, X. S.; Li, L.; Wang, J. F. pH-controlled reversible assembly and disassembly of gold nanorods. Small 2008, 4, 1287–1292.

30

Sreeprasad, T. S.; Pradeep, T. Reversible assembly and disassembly of gold nanorods induced by EDTA and its application in SERS tuning. Langmuir 2011, 27, 3381–3390.

31

Iida, R.; Mitomo, H.; Niikura, K.; Matsuo, Y.; Ijiro, K. Two-step assembly of thermoresponsive gold nanorods coated with a single kind of ligand. Small 2018, 14, 1704230.

32

Wu, J.; Xu, Y.; Li, D. F.; Ma, X.; Tian, H. End-to-end assembly and disassembly of gold nanorods based on photo-responsive host-guest interaction. Chem. Commun. 2017, 53, 4577–4580.

33

Lin, Y. Y.; Cheng, X. H.; Qiao, Y.; Yu, C. L.; Li, Z. B.; Yan, Y.; Huang, J. B. Creation of photo-modulated multi-state and multi-scale molecular assemblies via binary-state molecular switch. Soft Matter 2010, 6, 902–908.

34

Lohse, S. E.; Murphy, C. J. The quest for shape control: A history of gold nanorod synthesis. Chem. Mater. 2013, 25, 1250-1261.

35

Bishop, K. J. M.; Wilmer, C. E.; Soh, S.; Grzybowski, B. A. Nanoscale forces and their uses in self-assembly. Small 2009, 5, 1600–1630.

36

Zhang, L.; Dai, L. W.; Rong, Y.; Liu, Z. Z.; Tong, D. Y.; Huang, Y. J.; Chen, T. Light-triggered reversible self-assembly of gold nanoparticle oligomers for tunable SERS. Langmuir 2015, 31, 1164-1171.

37

Nikoobakht, B.; El-Sayed, M. A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 2003, 15, 1957–1962.

38

Orendorff, C. J.; Murphy, C. J. Quantitation of metal content in the silver-assisted growth of gold nanorods. J. Phys. Chem. B 2006, 110, 3990–3994.

39

Vigderman, L.; Zubarev, E. R. High-yield synthesis of gold nanorods with longitudinal SPR peak greater than 1, 200 nm using hydroquinone as a reducing agent. Chem. Mater. 2013, 25, 1450–1457.

40

Ruan, Q. F.; Shao, L.; Shu, Y. W.; Wang, J. F.; Wu, H. K. Growth of monodisperse gold nanospheres with diameters from 20 nm to 220 nm and their core/satellite nanostructures. Adv. Opt. Mater. 2014, 2, 65–73.

Nano Research
Pages 1563-1569
Cite this article:
Wang Q, Li D, Xiao J, et al. Reversible self-assembly of gold nanorods mediated by photoswitchable molecular adsorption. Nano Research, 2019, 12(7): 1563-1569. https://doi.org/10.1007/s12274-019-2393-9
Topics:

688

Views

24

Crossref

N/A

Web of Science

22

Scopus

5

CSCD

Altmetrics

Received: 31 January 2019
Revised: 08 March 2019
Accepted: 27 March 2019
Published: 12 April 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return