AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

In-situ formation of MOF derived mesoporous Co3N/amorphous N-doped carbon nanocubes as an efficient electrocatalytic oxygen evolution reaction

Bong Kyun Kang1,Seo Young Im2,Jooyoung Lee2Sung Hoon Kwag2Seok Bin Kwon2SintayehuNibret Tiruneh2Min-Jun Kim3Jung Ho Kim4,5Woo Seok Yang1Byungkwon Lim2Dae Ho Yoon2( )
Nano Materials and Components Research Center,Korea Electronics Technology Institute,Seongnam,463-816,Republic of Korea;
School of Advanced Materials Science and Engineering,Sungkyunkwan University,Suwon,440-746,Republic of Korea;
Advanced Materials & Processing Center,Institute for Advanced Engineering (IAE),Yongin,175-28,Republic of Korea;
Australian Institute for Innovative Materials (AIIM),University of Wollongong,Squires Way, North Wollongong, NSW,2500,Australia;
Department of Advanced Materials Engineering for Information and Electronics,Kyung Hee University,1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do,17104,Republic of Korea;

Present address: Nano Materials and Components Research Center, Korea Electronics Technology Institute, Seongnam 463-816, Republic of Korea, School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea

Show Author Information

Graphical Abstract

Abstract

The suitable materials, metal nitrides, are a promising class of electrocatalyst materials for a highly efficient oxygen evolution reaction (OER) because they exhibit superior intrinsic conductivity and have higher sustainability than oxide-based materials. To our knowledge, for the first time, we report a designable synthesis of three-dimensional (3D) and mesoporous Co3N@amorphous N-doped carbon (AN-C) nanocubes (NCs) with well-controlled open-framework structures via monodispersed Co3[Co(CN)6]2 Prussian blue analogue (PBA) NC precursors using in situ nitridation and calcination processes. Co3N@AN-C NCs (2 h) demonstrate better OER activity with a remarkably low Tafel plot (69.6 mV∙dec-1), low overpotential of 280 mV at a current density of 10 mA∙cm-2. Additionally, excellent cycling stability in alkaline electrolytes was exhibited without morphological changes and voltage elevations, superior to most reported hierarchical structures of transition-metal nitride particles. The presented strategy for synergy effects of metal-organic frameworks (MOFs)-derived transition-metal nitrides-carbon hybrid nanostructures provides prospects for developing high-performance and advanced electrocatalyst materials.

Electronic Supplementary Material

Download File(s)
12274_2019_2399_MOESM1_ESM.pdf (3.2 MB)

References

1

Jiang, J.; Zhang, A. L.; Li, L. L.; Ai, L. H. Nickel-cobalt layered double hydroxide nanosheets as high-performance electrocatalyst for oxygen evolution reaction. J. Power Sources 2015, 278, 445-451.

2

Lang, X.; Li, J. K.; Xiao, S.; Yan, K. Y.; Wang, Z. L.; Chen, H. N.; Yang, S. H. A strongly coupled graphene and FeNi double hydroxide hybrid as an excellent electrocatalyst for the oxygen evolution reaction. Angew. Chem. 2014, 126, 7714-7718.

3

Yu, X. Y.; Feng, Y.; Guan, B. Y.; Lou, X. W.; Paik, U. Carbon coated porous nickel phosphides nanoplates for highly efficient oxygen evolution reaction. Energy Environ. Sci. 2016, 9, 1246-1250.

4

Kim, M.; Kim, S.; Song, D.; Oh, S.; Chang, K. J.; Cho, E. Promotion of electrochemical oxygen evolution reaction by chemical coupling of cobalt to molybdenum carbide. Appl. Catal. B Environ. 2018, 227, 340-348.

5

Tian, J. Q.; Liu, Q.; Asiri, A. M.; Alamry, K. A.; Sun, X. P. Ultrathin graphitic C3N4 nanosheets/graphene composites: Efficient organic electrocatalyst for oxygen evolution reaction. ChemSusChem 2014, 7, 2125-2130.

6

Zhao, X.; Li, X. Q.; Yan, Y.; Xing, Y. L.; Lu, S. C.; Zhao, L. Y.; Zhou, S. M.; Peng, Z. M.; Zeng, J. Electrical and structural engineering of cobalt selenide nanosheets by Mn modulation for efficient oxygen evolution. Appl. Catal. B Environ. 2018, 236, 569-575.

7

Liu, X.; Jia, H. X.; Sun, Z. J.; Chen, H. Y.; Xu, P.; Du, P. W. Nanostructured copper oxide electrodeposited from copper(Ⅱ) complexes as an active catalyst for electrocatalytic oxygen evolution reaction. Electrochem. Commun. 2014, 46, 1-4.

8

Görlin, M.; Chernev, P.; de Araújo, J. F.; Reier, T.; Dresp, S.; Paul, B.; Krähnert, R.; Dau, H.; Strasser, P. Oxygen evolution reaction dynamics, faradaic charge efficiency, and the active metal redox states of Ni-Fe oxide water splitting electrocatalysts. J. Am. Chem. Soc. 2016, 138, 5603-5614.

9

Burke, M. S.; Zou, S. H.; Enman, L. J.; Kellon, J. E.; Gabor, C. A.; Pledger, E.; Boettcher, S. W. Revised oxygen evolution reaction activity trends for first- row transition-metal (Oxy)hydroxides in alkaline media. J. Phys. Chem. Lett. 2015, 6, 3737-3742.

10

Guo, Y. N.; Tang, J.; Wang, Z. L.; Sugahara, Y.; Yamauchi, Y. Hollow porous heterometallic phosphide nanocubes for enhanced electrochemical water splitting. Small, 2018, 14, 1802442.

11

Zhuang, Z. B.; Sheng, W. C.; Yan, Y. S. Synthesis of monodispere Au@Co3O4 core-shell nanocrystals and their enhanced catalytic activity for oxygen evolution reaction. Adv. Mater. 2014, 26, 3950-3955.

12

Bergmann, A.; Martinez-Moreno, E.; Teschner, D.; Chernev, P.; Gliech, M.; de Araújo, J. F.; Reier, T.; Dau, H.; Strasser, P. Reversible amorphization and the catalytically active state of crystalline Co3O4 during oxygen evolution. Nat. Commun. 2015, 6, 8625.

13

Nie, R. F.; Shi, J. J.; Du, W. C.; Ning, W. S.; Hou, Z. Y.; Xiao, F. S. A sandwich N-doped graphene/Co3O4 hybrid: An efficient catalyst for selective oxidation of olefins and alcohols. J. Mater. Chem. A 2013, 1, 9037-9045.

14

Yu, J. Y.; Zhou, W. J.; Xiong, T. L.; Wang, A. L.; Chen, S. W.; Chu, B. L. Enhanced electrocatalytic activity of Co@N-doped carbon nanotubes by ultrasmall defect-rich TiO2 nanoparticles for hydrogen evolution reaction. Nano Res. 2017, 10, 2599-2609.

15

Zhang, K. J.; Zhang, L. X.; Chen, X.; He, X.; Wang, X. G.; Dong, S. M.; Han, P. X.; Zhang, C. J.; Wang, S.; Gu, L.; Cui, G. L. Mesoporous cobalt molybdenum nitride: A highly active bifunctional electrocatalyst and its application in Lithium-O2 batteries. J. Phys. Chem. C 2013, 117, 858-865.

16

Jiang, M.; Li, Y. J.; Lu, Z. Y.; Sun, X. M.; Duan, X. Binary nickel-iron nitride nanoarrays as bifunctional electrocatalysts for overall water splitting. Inorg. Chem. Front. 2016, 3, 630-634.

17

Balogun, M. S.; Zeng, Y. X.; Qiu, W. T.; Luo, Y.; Onasanya, A.; Olaniyi, T. K.; Tong, Y. X. Three-dimensional nickel nitride (Ni3N) nanosheets: Free standing and flexible electrodes for lithium ion batteries and supercapacitors. J. Mater. Chem. A 2016, 4, 9844-9849.

18

Chen, P. Z.; Xu, K.; Fang, Z. W.; Tong, Y.; Wu, J. C.; Lu, X. L.; Peng, X.; Ding, H.; Wu, C. Z.; Xie, Y. Metallic Co4N porous nanowire arrays activated by surface oxidation as electrocatalysts for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2015, 127, 14923-14927.

19

Xu, K.; Chen, P. Z.; Li, X. L.; Tong, Y.; Ding, H.; Wu, X. J.; Chu, W. S.; Peng, Z. M.; Wu, C. Z.; Xie, Y. Metallic nickel nitride nanosheets realizing enhanced electrochemical water oxidation. J. Am. Chem. Soc. 2015, 137, 4119-4125.

20

Gao, S. Y.; Wei, X. J.; Fan, H.; Li, L. Y.; Geng, K. R.; Wang, J. J. Nitrogen- doped carbon shell structure derived from natural leaves as a potential catalyst for oxygen reduction reaction. Nano Energy 2015, 13, 518-526.

21

Zhao, S. L.; Wang, Y.; Dong, J. C.; He, C. T.; Yin, H. J.; An, P. F.; Zhao, K.; Zhang, X. F.; Gao, C.; Zhang, L. J. et al. Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution. Nat. Energy 2016, 1, 16184.

22

Li, X. N.; Ao, Z. M.; Liu, J. Y.; Sun, H. Q.; Rykov, A. I.; Wang, J. H. Topotactic transformation of metal-organic frameworks to graphene- encapsulated transition-metal nitrides as efficient fenton-like catalysts. ACS Nano 2016, 10, 11532-11540.

23

Hu, L.; Zhang, P.; Chen, Q. W.; Mei, J. Y.; Yan, N. Room-temperature synthesis of Prussian blue analogue Co3[Co(CN)6]2 porous nanostructures and their CO2 storage properties. RSC Adv. 2011, 1, 1574-1578.

24

Buchold, D. H. M.; Feldmann, C. Synthesis of nanoscale Co3[Co(CN)6]2 in reverse microemulsions. Chem. Mater. 2007, 19, 3376-3380.

25

Agnihotry, S. A.; Singh, P.; Joshi, A. G.; Singh, D. P.; Sood, K. N.; Shivaprasad, S. M. Electrodeposited Prussian blue films: Annealing effect. Electrochim. Acta 2006, 51, 4291-4301.

26

Niu, J. J.; Gao, H.; Wang, L. T.; Xin, S. Y.; Zhang, G. Y.; Wang, Q.; Guo, L. N.; Liu, W. J.; Gao, X. P.; Wang, Y. H. Facile synthesis and optical properties of nitrogen-doped carbon dots. New J. Chem. 2014, 38, 1522-1527.

27

Fei, H. L.; Dong, J. C.; Arellano-Jiménez, M. J.; Ye, G. L.; Kim, N. D.; Samuel, E. L. G.; Peng, Z. W.; Zhu, Z.; Qin, F.; Bao, J. M. et al. Atomic cobalt on nitrogen- doped graphene for hydrogen generation. Nat. Comm. 2015, 6, 8668.

28

Wahid, M.; Parte, G.; Phase, D.; Ogale, S. Yogurt: A novel precursor for heavily nitrogen doped supercapacitor carbon. J. Mater. Chem. A 2015, 3, 1208-1215.

29

Susi, T.; Pichler, T.; Ayala, P. X-ray photoelectron spectroscopy of graphitic carbon nanomaterials doped with heteroatoms. Beilstein J. Nanotechnol. 2015, 6, 177-192.

30

Meng, T.; Qin, J. W.; Wang, S. G.; Zhao, D.; Mao, B. G.; Cao, M. H. In situ coupling of Co0.85Se and N-doped carbon via one-step selenization of metal-organic frameworks as a trifunctional catalyst for overall water splitting and Zn-air batteries. J. Mater. Chem. A 2017, 5, 7001-7014.

31

Su, Y. H.; Zhu, Y. H.; Jiang, H. L.; Shen, J. H.; Yang, X. L.; Zou, W. J.; Chen, J. D.; Li, C. Z. Cobalt nanoparticles embedded in N-doped carbon as an efficient bifunctional electrocatalyst for oxygen reduction and evolution reactions. Nanoscale 2014, 6, 15080-15089.

32

Cao, B. F.; Veith, G. M.; Neuefeind, J. C.; Adzic, R. R.; Khalifah, P. G. Mixed close-packed cobalt molybdenum nitrides as non-noble metal electrocatalysts for the hydrogen evolution reaction. J. Am. Chem. Soc. 2013, 135, 19186- 19192.

33

Zhong, X.; Jiang, Y.; Chen, X. L.; Wang, L.; Zhuang, G. L.; Li, X. N.; Wang, J. G. Integrating cobalt phosphide and cobalt nitride-embedded nitrogen- rich nanocarbons: High-performance bifunctional electrocatalysts for oxygen reduction and evolution. J. Mater. Chem. A 2016, 4, 10575-10584.

34

Todorova, S.; Kolev, H.; Holgado, J. P.; Kadinov, G.; Bonev, C.; Pereñíguez, R.; Caballero, A. Complete n-hexane oxidation over supported Mn-Co catalysts. App. Catal. B: Environ. 2010, 94, 46-54.

35

Zhong, X.; Liu, L.; Jiang, Y.; Wang, X. D.; Wang, L.; Zhuang, G. L.; Li, X. N.; Mei, D. H.; Wang, J. G.; Su, D. S. Synergistic effect of nitrogen in cobalt nitride and nitrogen-doped hollow carbon spheres for the oxygen reduction reaction. ChemCatChem 2015, 7, 1826-1832.

36

Wang, Y. Y.; Liu, D. D.; Liu, Z. J.; Xie, C.; Huo, J.; Wang, S. Y. Porous cobalt- iron nitride nanowires as excellent bifunctional electrocatalysts for overall water splitting. Chem. Commun. 2016, 52, 12614-12617.

37

Chen, P. Z.; Xu, K.; Tong, Y.; Li, X. L.; Tao, S.; Fang, Z. W.; Chu, W. S.; Wu, X. J.; Wu, C. Z. Cobalt nitrides as a class of metallic electrocatalysts for the oxygen evolution reaction. Inorg. Chem. Front. 2016, 3, 236-242.

38

Zhang, Y. Q.; Ouyang, B.; Xu, J.; Jia, G. C.; Chen, S.; Rawat, R. S.; Fan, H. J. Rapid synthesis of cobalt nitride nanowires: Highly efficient and low-cost catalysts for oxygen evolution. Angew. Chem., Int. Ed. 2016, 55, 8670-8674.

39

Swesi, A. T.; Masud, J.; Nath, M. Nickel selenide as a high-efficiency catalyst for oxygen evolution reaction. Energy Environ. Sci. 2016, 9, 1771-1782.

40

Yin, Z. X.; Zhu, C. L.; Li, C. Y.; Zhang, S.; Zhang, X. T.; Chen, Y. J. Hierarchical nickel-cobalt phosphide yolk-shell spheres as highly active and stable bifunctional electrocatalysts for overall water splitting. Nanoscale 2016, 8, 19129-19138.

41

Zhu, Y. P.; Liu, Y. P.; Ren, T. Z.; Yuan, Z. Y. Self-supported cobalt phosphide mesoporous nanorod arrays: A flexible and bifunctional electrode for highly active electrocatalytic water reduction and oxidation. Adv. Funct. Mater. 2015, 25, 7337-7347.

42

Yeo, B. S.; Bell, A. T. Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 2011, 133, 5587-5593.

43

Li, W.; Gao, X. F.; Xiong, D. H.; Wei, F.; Song, W. G.; Xu, J. Y.; Liu, L. F. Hydrothermal synthesis of monolithic Co3Se4 nanowire electrodes for oxygen evolution and overall water splitting with high efficiency and extraordinary catalytic stability. Adv. Energy Mater. 2017, 7, 1602579.

44

Wang, H.; Qing, C.; Guo, J. L.; Aref, A. A.; Sun, D. M.; Wang, B. X.; Tang, Y. W. Highly conductive carbon-CoO hybrid nanostructure arrays with enhanced electrochemical performance for asymmetric supercapacitors. J. Mater. Chem. A 2014, 2, 11776-11783.

45

Zhuang, L. Z.; Ge, L.; Yang, Y. S.; Li, M. R.; Jia, Y.; Yao, X. D.; Zhu, Z. H. Ultrathin iron-cobalt oxide nanosheets with abundant oxygen vacancies for the oxygen evolution reaction. Adv. Mater. 2017, 29, 1606793.

Nano Research
Pages 1605-1611
Cite this article:
Kang BK, Im SY, Lee J, et al. In-situ formation of MOF derived mesoporous Co3N/amorphous N-doped carbon nanocubes as an efficient electrocatalytic oxygen evolution reaction. Nano Research, 2019, 12(7): 1605-1611. https://doi.org/10.1007/s12274-019-2399-3
Topics:

863

Views

116

Crossref

N/A

Web of Science

114

Scopus

0

CSCD

Altmetrics

Received: 11 December 2018
Revised: 08 March 2019
Accepted: 01 April 2019
Published: 23 April 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return