AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Defect engineering of molybdenum disulfide through ion irradiation to boost hydrogen evolution reaction performance

Cheng Sun1,§Peipei Wang2,§Hao Wang1Chuan Xu2Juntong Zhu1Yanxia Liang2Ying Su1Yining Jiang1Wenqi Wu1Engang Fu2( )Guifu Zou1( )
Soochow Institute for Energy and Materials Innovations & Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province,Soochow University,Suzhou,215006,China;
State Key Laboratory of Nuclear Physics and Technology,School of Physics, Peking University,Beijing,100871,China;

§ Cheng Sun and Peipei Wang contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

The inert basal plane of molybdenum disulfide (MoS2) restrains its further hydrogen evolution reaction (HER) performance. This work attempts ion irradiation to activate inert basal plane of MoS2 nanosheet to improve its electrocatalytic performance. Experimental results demonstrate the sulphur vacancies generated by ion irradiation on the basal plane of MoS2 mainly boost the efficiency of HER performance. The moderate fluence of carbon ion irradiation gains the optimum HER performance with an onset potential of 77 mV and Tafel slope of 66 mV/dec.

Electronic Supplementary Material

Download File(s)
12274_2019_2400_MOESM1_ESM.pdf (2.3 MB)

References

1

Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294-303.

2

Wang, H.; Gao, L. J. Recent developments in electrochemical hydrogen evolution reaction. Curr. Opin. Electrochem. 2018, 7, 7-14.

3

Chou, S. W.; Lai, Y. R.; Yang, Y. Y.; Tang, C. Y.; Hayashi, M.; Chen, H. C.; Chen, H. L.; Chou, P. T. Uniform size and composition tuning of PtNi octahedra for systematic studies of oxygen reduction reactions. J. Catal. 2014, 309, 343-350.

4

Casado-Rivera, E.; Volpe, D. J.; Alden, L.; Lind, C.; Downie, C.; Vázquez- Alvarez, T.; Angelo, A. C. D.; DiSalvo, F. J.; Abruña, H. D. Electrocatalytic activity of ordered intermetallic phases for fuel cell applications. J. Am. Chem. Soc. 2004, 126, 4043-4049.

5

Greeley, J.; Jaramillo, T. F.; Bonde, J.; Chorkendorff, I.; Nørskov, J. K. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater. 2006, 5, 909-913.

6

Merki, D.; Hu, X. L. Recent developments of molybdenum and tungsten sulfides as hydrogen evolution catalysts. Energy Environ. Sci. 2011, 4, 3878-3888.

7

Lu, Q. P.; Yu, Y. F.; Ma, Q. L.; Chen, B.; Zhang, H. 2D Transition- metal-dichalcogenide-nanosheet-based composites for photocatalytic and electrocatalytic hydrogen evolution reactions. Adv. Mater. 2016, 28, 1917- 1933.

8

Wang, H.; Ouyang, L. Y.; Zou, G. F.; Sun, C.; Hu, J.; Xiao, X.; Gao, L. J. Optimizing MoS2 edges by alloying isovalent W for robust hydrogen evolution activity. ACS Catal. 2018, 8, 9529-9536.

9

Li, Y. G.; Wang, H. L.; Xie, L. M.; Liang, Y. Y.; Hong, G. S.; Dai, H. J. MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2011, 133, 7296-7299.

10

Voiry, D.; Mohite, A.; Chhowalla, M. Phase engineering of transition metal dichalcogenides. Chem. Soc. Rev. 2015, 44, 2702-2712.

11

Eda, G.; Fujita, T.; Yamaguchi, H.; Voiry, D.; Chen, M. W.; Chhowalla, M. Coherent atomic and electronic heterostructures of single-layer MoS2. ACS Nano 2012, 6, 7311-7317.

12

Yin, Y.; Han, J. C.; Zhang, Y. M.; Zhang, X. H.; Xu, P.; Yuan, Q.; Samad, L.; Wang, X. J.; Wang, Y.; Zhang, Z. H. et al. Contributions of phase, sulfur vacancies, and edges to the hydrogen evolution reaction catalytic activity of porous molybdenum disulfide nanosheets. J. Am. Chem. Soc. 2016, 138, 7965-7972.

13

Yan, Y.; Xia, B. Y.; Xu, Z. C.; Wang, X. Recent development of molybdenum sulfides as advanced electrocatalysts for hydrogen evolution reaction. ACS Catal. 2014, 4, 1693-1705.

14

Benson, J.; Li, M. X.; Wang, S. B.; Wang, P.; Papakonstantinou, P. Electrocatalytic hydrogen evolution reaction on edges of a few layer molybdenum disulfide nanodots. ACS Appl. Mater. Interfaces 2015, 7, 14113-14122.

15

Huang, X.; Zeng, Z. Y.; Bao, S. Y.; Wang, M. F.; Qi, X. Y.; Fan, Z. X.; Zhang, H. Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets. Nat. Commun. 2013, 4, 1444.

16

Yang, L.; Hong, H.; Fu, Q.; Huang, Y. F.; Zhang, J. Y.; Cui, X. D.; Fan, Z. Y.; Liu, K. H.; Xiang, B. Single-crystal atomic-layered molybdenum disulfide nanobelts with high surface activity. ACS Nano 2015, 9, 6478-6483.

17

Huang, J. W.; Li, Y. R.; Xia, Y. F.; Zhu, J. T.; Yi, Q. H.; Wang, H.; Xiong, J.; Sun, Y. H.; Zou, G. F. Flexible cobalt phosphide network electrocatalyst for hydrogen evolution at all pH values. Nano Res. 2017, 10, 1010-1020.

18

Wang, H.; Cao, Y. J.; Sun, C.; Zou, G. F.; Huang, J. W.; Kuai, X. X.; Zhao, J. Q.; Gao, L. J. Strongly coupled molybdenum carbide on carbon sheets as a bifunctional electrocatalyst for overall water splitting. ChemSusChem 2017, 10, 3540-3546.

19

Wang, H.; Sun, C.; Cao, Y. J.; Zhu, J. T.; Chen, Y.; Guo, J.; Zhao, J.; Sun, Y. H.; Zou, G. F. Molybdenum carbide nanoparticles embedded in nitrogen- doped porous carbon nanofibers as a dual catalyst for hydrogen evolution and oxygen reduction reactions. Carbon 2017, 114, 628-634.

20

Xia, Y. F.; Huang, J. W.; Wu, W. Q.; Zhang, Y. D.; Wang, H.; Zhu, J. T.; Yao, J. J.; Xu, L.; Sun, Y. H.; Zhang, L. et al. Sulfur-doped rhenium selenide vertical nanosheets: A high-performance electrocatalyst for hydrogen evolution. ChemCatChem 2018, 10, 4424-4430.

21

Liu, H. W.; Liang, S. P.; Wu, T. J.; Chang, H. M.; Kao, P. K.; Hsu, C. C.; Chen, J. Z.; Chou, P. T.; Cheng, I. C. Rapid atmospheric pressure plasma jet processed reduced graphene oxide counter electrodes for dye-sensitized solar cells. ACS Appl. Mater. Interfaces 2014, 6, 15105-15112.

22

Li, H.; Tsai, C.; Koh, A. L.; Cai, L. L.; Contryman, A. W.; Contryman, A. H.; Zhao, J. H.; Han, H. S.; Manoharan, H. C.; Abild-Pedersen, F. et al. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat. Mater. 2016, 15, 48-53.

23

Voiry, D.; Salehi, M.; Silva, R.; Fujita, T.; Chen, M. W.; Asefa, T.; Shenoy, V. B.; Eda, G.; Chhowalla, M. Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett. 2013, 13, 6222-6227.

24

Hinnemann, B.; Moses, P. G.; Bonde, J.; Jorgensen, K. P.; Nielsen, J. H.; Horch, S.; Chorkendorff, I.; Norskov, J. K. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 2005, 127, 5308-5309.

25

Gómez-Navarro, C.; De Pablo, P. J.; Gómez-Herrero, J.; Biel, B.; Garcia- Vidal, F. J.; Rubio, A.; Flores, F. Tuning the conductance of single-walled carbon nanotubes by ion irradiation in the Anderson localization regime. Nat. Mater. 2005, 4, 534-539.

26

Ogata, T.; Teshima, T.; Inaoka, M.; Minami, K.; Tsuchiya, T.; Isono, M.; Furusawa, Y.; Matsuura, N. Carbon ion irradiation suppresses metastatic potential of human non-small cell lung cancer A549 cells through the phosphatidylinositol-3-kinase/Akt signaling pathway. J. Radiat. Res. 2011, 52, 374-379.

27

Wang, Z. X.; Yu, L. P.; Zhang, W.; Ding, Y. F.; Li, Y. L.; Han, J. G.; Zhu, Z. Y.; Xu, H. J.; He, G. W.; Chen, Y.; Hu, G. Amorphous molecular junctions produced by ion irradiation on carbon nanotubes. Phys. Lett. A 2004, 324, 321-325.

28

Sun, Y. J.; Liang, Y. X.; Luo, M. C.; Lv, F.; Qin, Y. N.; Wang, L.; Xu, C.; Fu, E. G.; Gu, S. J. Defects and interfaces on PtPb nanoplates boost fuel cell electrocatalysis. Small 2018, 14, 1702259.

29

Eda, G.; Yamaguchi, H.; Voiry, D.; Fujita, T.; Chen, M. W.; Chhowalla, M. Photoluminescence from chemically exfoliated MoS2. Nano Lett. 2011, 11, 5111-5116.

30

Kappera, R.; Voiry, D.; Yalcin, S. E.; Branch, B.; Gupta, G.; Mohite, A. D.; Chhowalla, M. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 2014, 13, 1128-1134.

31

Chen, Y.; Huang, S. X.; Ji, X.; Adepall, K.; Yin, K. D.; Ling, X.; Wang, X. W.; Xue, J. M.; Dresselhaus, M.; Kong, J. et al. Tuning electronic structure of single layer MoS2 through defect and interface engineering. ACS Nano 2018, 12, 2569-2579.

32

Hansen, N.; Huang, X. Microstructure and flow stress of polycrystals and single crystals. Acta Mater. 1998, 46, 1827-1836.

33

Conway, B. E.; Tilak, B. V. Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H. Electrochim. Acta 2002, 47, 3571-3594.

34

Chang, Y. H.; Lin, C. T.; Chen, T. Y.; Hsu, C. L.; Lee, Y. H.; Zhang, W. J.; Wei, K. H.; Li, L. J. Highly efficient electrocatalytic hydrogen production by MoSx grown on graphene-protected 3D Ni foams. Adv. Mater. 2013, 25, 756-760.

35

Yu, Y. F.; Huang, S. Y.; Li, Y. P.; Steinmann, S. N.; Yang, W. T.; Cao, L. Y. Layer-dependent electrocatalysis of MoS2 for hydrogen evolution. Nano Lett. 2014, 14, 553-558.

36

Li, Y.; Yin, K.; Wang, L. L.; Lu, X. L.; Zhang, Y. Q.; Liu, Y. T.; Yan, D. F.; Song, Y. Z.; Luo, S. L. Engineering MoS2 nanomesh with holes and lattice defects for highly active hydrogen evolution reaction. Appl. Catal. B: Environ. 2018, 239, 537-544.

37

Madauß, L.; Zegkinoglou, I.; Muiños, H. V.; Choi, Y. W.; Kunze, S.; Zhao, M. Q.; Naylor, C. H.; Ernst, P.; Pollmann, E.; Ochedowski, O. et al. Highly active single-layer MoS2 catalysts synthesized by swift heavy ion irradiation. Nanoscale 2018, 10, 22908-22916.

38

Park, S.; Park, J.; Abroshan, H.; Zhang, L.; Kim, J. K.; Zhang, J. M.; Guo, J. H.; Siahrostami, S.; Zheng, X. L. Enhancing catalytic activity of MoS2 basal plane S-vacancy by Co cluster addition. ACS Energy Lett. 2018, 3, 2685-2693.

39

Yan, Y.; Ge, X. M.; Liu, Z. L.; Wang, J. Y.; Lee, J. M.; Wang, X. Facile synthesis of low crystalline MoS2 nanosheet-coated CNTs for enhanced hydrogen evolution reaction. Nanoscale 2013, 5, 7768-7771.

40

Merki, D.; Vrubel, H.; Rovelli, L.; Fierro, S.; Hu, X. L. Fe, Co, and Ni ions promote the catalytic activity of amorphous molybdenum sulfide films for hydrogen evolution. Chem. Sci. 2012, 3, 2515-2525.

41

Huang, J. W.; Sun, Y. H.; Zhang, Y. D.; Zou, G. F.; Yan, C. Y.; Cong, S.; Lei, T. Y.; Dai, X.; Guo, J.; Lu, R. F. et al. A new member of electrocatalysts based on nickel metaphosphate nanocrystals for efficient water oxidation. Adv. Mater. 2018, 30, 1705045.

42

González, J. R.; Alcántara, R.; Tirado, J. L.; Fielding, A. J.; Dryfe, R. A. W. Electrochemical interaction of few-layer molybdenum disulfide composites vs sodium: New insights on the reaction mechanism. Chem. Mater. 2017, 29, 5886-5895.

Nano Research
Pages 1613-1618
Cite this article:
Sun C, Wang P, Wang H, et al. Defect engineering of molybdenum disulfide through ion irradiation to boost hydrogen evolution reaction performance. Nano Research, 2019, 12(7): 1613-1618. https://doi.org/10.1007/s12274-019-2400-1
Topics:

653

Views

68

Crossref

N/A

Web of Science

65

Scopus

10

CSCD

Altmetrics

Received: 14 February 2019
Revised: 22 March 2019
Accepted: 01 April 2019
Published: 23 April 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return