Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The performance of functional materials and specifically energy-related functional materials, such as fuel cells, solar cells, batteries and catalysts depends on the their local, nanoscale properties. However, heterogeneities in the phase, structure and composition of these functional materials makes it difficult to directly monitor and identify the influence of local physicochemical parameters on their global functionality. In this review we will discuss recent developments in the field of IR nanospectroscopy that enables the extraction of detailed chemical information at the nanoscale and the identification of nanoscale properties that influence the global performances of functional materials. Specifically, we will discuss the ways by which IR nanospectroscopy techniques, namely photo thermal induced resonance (PTIR) and scattering scanning near-field optical microscopy (s-SNOM), are utilized in order to identify nanoscale properties and their influence on the functionality of halide-perovskite solar cells and catalytic nanoparticles. In the last part of this review we will address the technical challenges and opportunities in expanding the scope of IR nanospectroscopy measurements into the field of electrochemistry-based functional materials.
Somorjai, G. A.; Park, J. Y. Molecular factors of catalytic selectivity. Angew. Chem. , Int. Ed. 2008, 47, 9212–9228.
Stephens, I. E. L.; Rossmeisl, J.; Chorkendorff, I. Toward sustainable fuel cells. Science 2016, 354, 1378–1379.
Nitta, N.; Wu, F. X.; Lee, J. T.; Yushin, G. Li-ion battery materials: Present and future. Mater. Today 2015, 18, 252–264.
Buurmans, I. L. C.; Weckhuysen, B. M. Heterogeneities of individual catalyst particles in space and time as monitored by spectroscopy. Nat. Chem. 2012, 4, 873–886.
Dery, S.; Amit, E.; Gross, E. Identifying catalytic reactions on single nanoparticles. Top. Catal. 2018, 61, 923–939.
Cordes, T.; Blum, S. A. Opportunities and challenges in single-molecule and single-particle fluorescence microscopy for mechanistic studies of chemical reactions. Nat. Chem. 2013, 5, 993–999.
Sambur, J. B.; Chen, P. Approaches to single-nanoparticle catalysis. Annu. Rev. Phys. Chem. 2014, 65, 395–422.
Grunwaldt, J. D.; Schroer, C. G. Hard and soft X-ray microscopy and tomography in catalysis: Bridging the different time and length scales. Chem. Soc. Rev. 2010, 39, 4741–4753.
Kalz, K. F.; Kraehnert, R.; Dvoyashkin, M.; Dittmeyer, R.; Gläser, R.; Krewer, U.; Reuter, K.; Grunwaldt, J. D. Future challenges in heterogeneous catalysis: Understanding catalysts under dynamic reaction conditions. Chemcatchem 2017, 9, 17–29.
Portela, R.; Perez-Ferreras, S.; Serrano-Lotina, A.; Bañares, M. A. Engineering operando methodology: Understanding catalysis in time and space. Front. Chem. Sci. Eng. 2018, 12, 509–536.
Shi, H.; Lercher, J. A.; Yu, X. Y. Sailing into uncharted waters: Recent advances in the in situ monitoring of catalytic processes in aqueous environments. Catal. Sci. Technol. 2015, 5, 3035–3060.
Dou, J.; Sun, Z. C.; Opalade, A. A.; Wang, N.; Fu, W. S.; Tao, F. Operando chemistry of catalyst surfaces during catalysis. Chem. Soc. Rev. 2017, 46, 2001–2027.
Tao, F.; Crozier, P. A. Atomic-scale observations of catalyst structures under reaction conditions and during catalysis. Chem. Rev. 2016, 116, 3487–3539.
Alayoglu, S.; Krier, J. M.; Michalak, W. D.; Zhu, Z. W.; Gross, E.; Somorjai, G. A. In situ surface and reaction probe studies with model nanoparticle catalysts. ACS Catal. 2012, 2, 2250–2258.
Wang, J. J.; Eng, C.; Chen-Wiegart, Y. C. K.; Wang, J. Probing three- dimensional sodiation-desodiation equilibrium in sodium-ion batteries by in situ hard X-ray nanotomography. Nat. Commun. 2015, 6, 7496.
Lin, F.; Liu, Y. J.; Yu, X. Q.; Cheng, L.; Singer, A.; Shpyrko, O. G.; Xin, H. L.; Tamura, N.; Tian, C. X.; Weng, T. C. et al. Synchrotron X-ray analytical techniques for studying materials electrochemistry in rechargeable batteries. Chem. Rev. 2017, 117, 13123–13186.
Weker, J. N.; Huang, X. J.; Toney, M. F. In situ X-ray-based imaging of nano materials. Curr. Opin. Chem. Eng. 2016, 12, 14–21.
Luo, L. L.; Engelhard, M. H.; Shao, Y. Y.; Wang, C. M. Revealing the dynamics of platinum nanoparticle catalysts on carbon in oxygen and water using environmental TEM. ACS Catal. 2017, 7, 7658–7664.
Liao, H. G.; Zheng, H. M. Liquid cell transmission electron microscopy. Ann. Rev. Phys. Chem. 2016, 67, 719–747.
He, K.; Bi, X. X.; Yuan, Y. F.; Foroozan, T.; Song, B. A.; Amine, K.; Lu, J.; Shahbazian-Yassar, R. Operando liquid cell electron microscopy of discharge and charge kinetics in lithium-oxygen batteries. Nano Energy 2018, 49, 338–345.
Jiang, L.; Zhang, B. D.; Médard, G.; Seitsonen, A. P.; Haag, F.; Allegretti, F.; Reichert, J.; Kuster, B.; Barth, J. V.; Papageorgiou, A. C. N-heterocyclic carbenes on close-packed coinage metal surfaces: Bis-carbene metal adatom bonding scheme of monolayer films on Au, Ag and Cu. Chem. Sci. 2017, 8, 8301–8308.
Zaera, F. New advances in the use of infrared absorption spectroscopy for the characterization of heterogeneous catalytic reactions. Chem. Soc. Rev. 2014, 43, 7624–7663.
Fernandez, D. C.; Bhargava, R.; Hewitt, S. M.; Levin, I. W. Infrared spectroscopic imaging for histopathologic recognition. Nat. Biotechnol. 2005, 23, 469–474.
Gross, E. Uncovering the deactivation mechanism of Au catalyst with operando high spatial resolution IR and X-ray microspectroscopy measurements. Surf. Sci. 2016, 648, 136–140.
Gross, E.; Shu, X. Z.; Alayoglu, S.; Bechtel, H. A.; Martin, M. C.; Toste, F. D.; Somorjai, G. A. In situ IR and X-ray high spatial-resolution microspectroscopy measurements of multistep organic transformation in flow microreactor catalyzed by Au nanoclusters. J. Am. Chem. Soc. 2014, 136, 3624–3629.
Stavitski, E.; Weckhuysen, B. M. Infrared and Raman imaging of heterogeneous catalysts. Chem. Soc. Rev. 2010, 39, 4615–4625.
Martin, M. C.; Dabat-Blondeau, C.; Unger, M.; Sedlmair, J.; Parkinson, D. Y.; Bechtel, H. A.; Illman, B.; Castro, J. M.; Keiluweit, M.; Buschke, D. et al. 3D spectral imaging with synchrotron fourier transform infrared spectro-microtomography. Nat. Methods 2013, 10, 861–864.
Nasse, M. J.; Walsh, M. J.; Mattson, E. C.; Reininger, R.; Kajdacsy- Balla, A.; Macias, V.; Bhargava, R.; Hirschmugl, C. J. High-resolution fourier-transform infrared chemical imaging with multiple synchrotron beams. Nat. Methods 2011, 8, 413–416.
Centrone, A. Infrared imaging and spectroscopy beyond the diffraction limit. Annu. Rev. Anal. Chem. 2015, 8, 101–126.
Dazzi, A.; Prater, C. B. AFM-IR: Technology and applications in nanoscale infrared spectroscopy and chemical imaging. Chem. Rev. 2017, 117, 5146–5173.
Atkin, J. M.; Berweger, S.; Jones, A. C.; Raschke, M. B. Nano-optical imaging and spectroscopy of order, phases, and domains in complex solids. Adv. Phys. 2012, 61, 745–842.
Knoll, B.; Keilmann, F. Near-field probing of vibrational absorption for chemical microscopy. Nature 1999, 399, 134–137.
Knoll, B.; Keilmann, F. Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy. Opt. Commun. 2000, 182, 321–328.
Dazzi, A.; Prazeres, R.; Glotin, F.; Ortega, J. M. Local infrared microspectroscopy with subwavelength spatial resolution with an atomic force microscope tip used as a photothermal sensor. Opt. Lett. 2005, 30, 2388–2390.
Dazzi, A.; Prazeres, R.; Glotin, F.; Ortega, J. M. Analysis of nano- chemical mapping performed by an AFM-based ("AFMIR") acousto-optic technique. Ultramicroscopy 2007, 107, 1194–1200.
Craig, I. M.; Taubman, M. S.; Lea, A. S.; Phillips, M. C.; Josberger, E. E.; Raschke, M. B. Infrared near-field spectroscopy of trace explosives using an external cavity quantum cascade laser. Opt. Express 2013, 21, 30401–30414.
Huth, F.; Govyadinov, A.; Amarie, S.; Nuansing, W.; Keilmann, F.; Hillenbrand, R. Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution. Nano Lett. 2012, 12, 3973–3978.
Bechtel, H. A.; Muller, E. A.; Olmon, R. L.; Martin, M. C.; Raschke, M. B. Ultrabroadband infrared nanospectroscopic imaging. Proc. Natl. Acad. Sci. USA 2014, 111, 7191–7196.
Hermann, P.; Hoehl, A.; Patoka, P.; Huth, F.; Rühl, E.; Ulm, G. Near-field imaging and nano-Fourier-transform infrared spectroscopy using broadband synchrotron radiation. Opt. Express 2013, 21, 2913–2919.
Patoka, P.; Ulrich, G.; Nguyen, A. E.; Bartels, L.; Dowben, P. A.; Turkowski, V.; Rahman, T. S.; Hermann, P.; Kästner, B.; Hoehl, A. et al. Nanoscale plasmonic phenomena in CVD-grown MoS2 monolayer revealed by ultra-broadband synchrotron radiation based nano-FTIR spectroscopy and near-field microscopy. Opt. Express 2016, 24, 1154–1164.
Keilmann, F.; Hillenbrand, R. Near-field microscopy by elastic light scattering from a tip. Philos Trans. Roy. Soc. A Mathem. Phys. Eng. Sci. 2004, 362, 787–805.
Schmidt, D. A.; Kopf, I.; Bründermann, E. A matter of scale: From far-field microscopy to near-field nanoscopy. Laser Photon. Rev. 2012, 6, 296–332.
Huth, F.; Chuvilin, A.; Schnell, M.; Amenabar, I.; Krutokhvostov, R.; Lopatin, S.; Hillenbrand, R. Resonant antenna probes for tip-enhanced infrared near-field microscopy. Nano Lett. 2013, 13, 1065–1072.
Aizpurua, J.; Taubner, T.; de Abajo, F. J. G.; Brehm, M.; Hillenbrand, R. Substrate-enhanced infrared near-field spectroscopy. Opt. Express 2008, 16, 1529–1545.
Zhang, L. M.; Andreev, G. O.; Fei, Z.; McLeod, A. S.; Dominguez, G.; Thiemens, M.; Castro-Neto, A. H.; Basov, D. N.; Fogler, M. M. Near-field spectroscopy of silicon dioxide thin films. Phys. Rev. B 2012, 85, 075419.
Xu, X. G.; Tanur, A. E.; Walker, G. C. Phase controlled homodyne infrared near-field microscopy and spectroscopy reveal inhomogeneity within and among individual boron nitride nanotubes. J. Phys. Chem. A 2013, 117, 3348–3354.
Amenabar, I.; Poly, S.; Goikoetxea, M.; Nuansing, W.; Lasch, P.; Hillenbrand, R. Hyperspectral infrared nanoimaging of organic samples based on Fourier transform infrared nanospectroscopy. Nat. Commun. 2017, 8, 14402.
Cvitkovic, A.; Ocelic, N.; Hillenbrand, R. Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy. Opt. Express 2007, 15, 8550–8565.
Dazzi, A.; Glotin, F.; Carminati, R. Theory of infrared nanospectroscopy by photothermal induced resonance. J. Appl. Phys. 2010, 107, 124519.
Lu, F.; Jin, M. Z.; Belkin, M. A. Tip-enhanced infrared nanospectroscopy via molecular expansion force detection. Nat. Photonics 2014, 8, 307–312.
Mathurin, J.; Pancani, E.; Deniset-Besseau, A.; Kjoller, K.; Prater, C. B.; Gref, R.; Dazzi, A. How to unravel the chemical structure and component localization of individual drug-loaded polymeric nanoparticles by using tapping AFM-IR. Analyst 2018, 143, 5940–5949.
Lahiri, B.; Holland, G.; Centrone, A. Chemical imaging beyond the diffraction limit: Experimental validation of the ptir technique. Small 2013, 9, 439–445.
Govyadinov, A. A.; Amenabar, I.; Huth, F.; Carney, P. S.; Hillenbrand, R. Quantitative measurement of local infrared absorption and dielectric function with tip-enhanced near-field microscopy. J. Phys. Chem. Lett. 2013, 4, 1526–1531.
Stranks, S. D.; Snaith, H. J. Metal-halide perovskites for photovoltaic and light-emitting devices. Nat. Nanotechnol. 2015, 10, 391–402.
Tan, K. W.; Moore, D. T.; Saliba, M.; Sai, H.; Estroff, L. A.; Hanrath, T.; Snaith, H. J.; Wiesner, U. Thermally induced structural evolution and performance of mesoporous block copolymer-directed alumina perovskite solar cells. ACS Nano 2014, 8, 4730–4739.
Pool, V. L.; Dou, B. J.; Van Campen, D. G.; Klein-Stockert, T. R.; Barnes, F. S.; Shaheen, S. E.; Ahmad, M. I.; van Hest, M. F. A. M.; Toney, M. F. Thermal engineering of FAPBI3 perovskite material via radiative thermal annealing and in situ XRD. Nat. Commun. 2017, 8, 14075.
Ke, J. C. R.; Walton, A. S.; Lewis, D. J.; Tedstone, A.; O'Brien, P.; Thomas, A. G.; Flavell, W. R. In situ investigation of degradation at organometal halide perovskite surfaces by X-ray photoelectron spectroscopy at realistic water vapour pressure. Chem. Commun. 2017, 53, 5231–5234.
Dang, Z. Y.; Shamsi, J.; Palazon, F.; Imran, M.; Akkerman, Q. A.; Park, S.; Bertoni, G.; Prato, M.; Brescia, R.; Manna, L. In situ transmission electron microscopy study of electron beam-induced transformations in colloidal cesium lead halide perovskite nanocrystals. ACS Nano 2017, 11, 2124–2132.
Jeangros, Q.; Duchamp, M.; Werner, J.; Kruth, M.; Dunin-Borkowski, R. E.; Niesen, B.; Ballif, C.; Hessler-Wyser, A. In situ TEM analysis of organic-inorganic metal-halide perovskite solar cells under electrical bias. Nano Lett. 2016, 16, 7013–7018.
Kosasih, F. U.; Ducati, C. Characterising degradation of perovskite solar cells through in-situ and operando electron microscopy. Nano Energy 2018, 47, 243–256.
Snaith, H. J.; Abate, A.; Ball, J. M.; Eperon, G. E.; Leijtens, T.; Noel, N. K.; Stranks, S. D.; Wang, J. T. W.; Wojciechowski, K.; Zhang, W. Anomalous hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 2014, 5, 1511–1515.
Yuan, Y. B.; Chae, J.; Shao, Y. C.; Wang, Q.; Xiao, Z. G.; Centrone, A.; Huang, J. S. Photovoltaic switching mechanism in lateral structure hybrid perovskite solar cells. Adv. Energy Mater. 2015, 5, 1500615.
Chae, J.; Dong, Q. F.; Huang, J. S.; Centrone, A. Chloride incorporation process in CH3NH3PbI3–xClx perovskites via nanoscale bandgap maps. Nano Lett. 2015, 15, 8114–8121.
Dong, Q. F.; Yuan, Y. B.; Shao, Y. C.; Fang, Y. J.; Wang, Q.; Huang, J. S. Abnormal crystal growth in CH3NH3PbI3–xClx using a multi-cycle solution coating process. Energy Environ. Sci. 2015, 8, 2464–2470.
Frost, J. M.; Butler, K. T.; Brivio, F.; Hendon, C. H.; van Schilfgaarde, M.; Walsh, A. Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett. 2014, 14, 2584–2590.
Strelcov, E.; Dong, Q. F.; Li, T.; Chae, J.; Shao, Y. C.; Deng, Y. H.; Gruverman, A.; Huang, J. S.; Centrone, A. CH3NH3PbI3 perovskites: Ferroelasticity revealed. Sci. Adv. 2017, 3, e1602165.
Sheppard, T. L.; Price, S. W. T.; Benzi, F.; Baier, S.; Klumpp, M.; Dittmeyer, R.; Schwieger, W.; Grunwaldt, J. D. In situ multimodal 3D chemical imaging of a hierarchically structured core@shell catalyst. J. Am. Chem. Soc. 2017, 139, 7855–7863.
Xu, W. L.; Kong, J. S.; Yeh, Y. T. E.; Chen, P. Single-molecule nanocatalysis reveals heterogeneous reaction pathways and catalytic dynamics. Nat. Mater. 2008, 7, 992–996.
Wang, W.; Tao, N. J. Detection, counting, and imaging of single nanoparticles. Anal. Chem. 2014, 86, 2–14.
Behrens, M.; Studt, F.; Kasatkin, I.; Kühl, S.; Hävecker, M.; Abild- Pedersen, F.; Zander, S.; Girgsdies, F.; Kurr, P.; Kniep, B. L. et al. The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts. Science 2012, 336, 893–897.
Nijem, S.; Dery, S.; Carmiel, M.; Horesh, G.; Garrevoet, J.; Spiers, K.; Falkenberg, G.; Marini, C.; Gross, E. Bimetallic Pt-Re nanoporous networks: Synthesis, characterization, and catalytic reactivity. J. Phys. Chem. C 2018, 122, 24801–24808.
Meirer, F.; Kalirai, S.; Morris, D.; Soparawalla, S.; Liu, Y. J.; Mesu, G.; Andrews, J. C.; Weckhuysen, B. M. Life and death of a single catalytic cracking particle. Sci. Adv. 2015, 1, e1400199.
Grunwaldt, J. D.; Hannemann, S.; Schroer, C. G.; Baiker, A. 2D-mapping of the catalyst structure inside a catalytic microreactor at work: Partial oxidation of methane over Rh/Al2O3. J. Phys. Chem. B 2006, 110, 8674–8680.
Muller, E. A.; Pollard, B.; Raschke, M. B. Infrared chemical nano-imaging: Accessing structure, coupling, and dynamics on molecular length scales. J. Phys. Chem. Lett. 2015, 6, 1275–1284.
Levratovsky, Y.; Gross, E. High spatial resolution mapping of chemically- active self-assembled N-heterocyclic carbenes on Pt nanoparticles. Faraday Discuss. 2016, 188, 345–353.
Wu, C. Y.; Wolf, W. J.; Levartovsky, Y.; Bechtel, H. A.; Martin, M. C.; Toste, F. D.; Gross, E. High-spatial-resolution mapping of catalytic reactions on single particles. Nature 2017, 541, 511–515.
Ruhling, A.; Schaepe, K.; Rakers, L.; Vonhören, B.; Tegeder, P.; Ravoo, B. J.; Glorius, F. Modular bidentate hybrid nhc-thioether ligands for the stabilization of palladium nanoparticles in various solvents. Angew. Chem. , Int. Ed. 2016, 55, 5856–5860.
Crudden, C. M.; Horton, J. H.; Ebralidze, I. I.; Zenkina, O. V.; McLean, A. B.; Drevniok, B.; She, Z.; Kraatz, H. B.; Mosey, N. J.; Seki, T. et al. Ultra stable self-assembled monolayers of N-heterocyclic carbenes on gold. Nat. Chem. 2014, 6, 409–414.
Ertl, G. Reactions at surfaces: From atoms to complexity (Nobel lecture). Angew. Chem. , Int. Ed. 2008, 47, 3524–3535.
Wang, H. L.; Sapi, A.; Thompson, C. M.; Liu, F. D.; Zherebetskyy, D.; Krier, J. M.; Carl, L. M.; Cai, X. J.; Wang, L. W.; Somorjai, G. A. Dramatically different kinetics and mechanism at solid/liquid and solid/gas interfaces for catalytic isopropanol oxidation over size-controlled platinum nanoparticles. J. Am. Chem. Soc. 2014, 136, 10515–10520.
Dery, S.; Kim, S.; Haddad, D.; Cossaro, A.; Verdini, A.; Floreano, L.; Toste, F. D.; Gross, E. Identifying site-dependent reactivity in oxidation reactions on single Pt particles. Chem. Sci. 2018, 9, 6523–6531.
Fu, D. L.; Park, K.; Delen, G.; Attila, Ö.; Meirer, F.; Nowak, D.; Park, S.; Schmidt, J. E.; Weckhuysen, B. M. Nanoscale infrared imaging of zeolites using photoinduced force microscopy. Chem. Commun. 2017, 53, 13012–13014.
Nowak, D.; Morrison, W.; Wickramasinghe, H. K.; Jahng, J.; Potma, E.; Wan, L.; Ruiz, R.; Albrecht, T. R.; Schmidt, K.; Frommer, J. et al. Nanoscale chemical imaging by photoinduced force microscopy. Sci. Adv. 2016, 2, e1501571.
Mandemaker, L. D. B.; Filez, M.; Delen, G.; Tan, H. S.; Zhang, X. H.; Lohse, D.; Weckhuysen, B. M. Time-resolved in situ liquid-phase atomic force microscopy and infrared nanospectroscopy during the formation of metal-organic framework thin films. J. Phys. Chem. Lett. 2018, 9, 1838–1844.
Qian, W.; Sun, S.; Song, J. F.; Nguyen, C.; Ducharme, S.; Turner, J. A. Focused electron-beam-induced deposition for fabrication of highly durable and sensitive metallic AFM-IR probes. Nanotechnology 2018, 29, 335702.
Mastel, S.; Govyadinov, A. A.; Maissen, C.; Chuvilin, A.; Berger, A.; Hillenbrand, R. Understanding the image contrast of material boundaries in IR nanoscopy reaching 5 nm spatial resolution. ACS Photonics 2018, 5, 3372–3378.
Hartman, T.; Wondergem, C. S.; Kumar, N.; van den Berg, A.; Weckhuysen, B. M. Surface- and tip-enhanced Raman spectroscopy in catalysis. J. Phys. Chem. Lett. 2016, 7, 1570–1584.
Guan, S. L.; Donovan-Sheppard, O.; Reece, C.; Willock, D. J.; Wain, A. J.; Attard, G. A. Structure sensitivity in catalytic hydrogenation at platinum surfaces measured by shell-isolated nanoparticle enhanced Raman spectroscopy (SHINERS). ACS Catal. 2016, 6, 1822–1832.
Hartman, T.; Wondergem, C. S.; Weckhuysen, B. M. Practical guidelines for shell-isolated nanoparticle-enhanced Raman spectroscopy of heterogeneous catalysts. Chemphyschem 2018, 19, 2461–2467.
Chae, J.; Lahiri, B.; Centrone, A. Engineering near-field SEIRA enhancements in plasmonic resonators. ACS Photonics 2016, 3, 87–95.
Muller, E. A.; Pollard, B.; Bechtel, H. A.; Adato, R.; Etezadi, D.; Altug, H.; Raschke, M. B. Nanoimaging and control of molecular vibrations through electromagnetically induced scattering reaching the strong coupling regime. ACS Photonics 2018, 5, 3594–3600.
Zeng, Z. C.; Huang, S. C.; Wu, D. Y.; Meng, L. Y.; Li, M. H.; Huang, T. X.; Zhong, J. H.; Wang, X.; Yang, Z. L.; Ren, B. Electrochemical tip-enhanced Raman spectroscopy. J. Am. Chem. Soc. 2015, 137, 11928–11931.
Khatib, O.; Wood, J. D.; McLeod, A. S.; Goldflam, M. D.; Wagner, M.; Damhorst, G. L.; Koepke, J. C.; Doidge, G. P.; Rangarajan, A.; Bashir, R. et al. Graphene-based platform for infrared near-field nanospectroscopy of water and biological materials in an aqueous environment. ACS Nano 2015, 9, 7968–7975.
Jin, M. Z.; Lu, F.; Belkin, M. A. High-sensitivity infrared vibrational nanospectroscopy in water. Light-Sci. Appl. 2017, 6, e17096.