Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Circulating peptide is a potential source of biomarkers for cancer detection. However, the existence of large molecular weight proteins in plasma have a disastrous effect on circulating peptides isolating and detecting. Herein, nanotrap fractionation following by mass spectrometry have been applied to quantify the levels of bradykinin (BK) and hydroxylated bradykinin (Hyp-BK) as a relative measure of KRAS-regulated prolyl-4-hydroxylase alpha-1 (P4HA1) which may serve as early diagnosis marker for pancreatic ductal adenocarcinoma (PDAC). We found that P4HA1 can be upregulated by KRASG12V, which is a PDAC driver mutation, using HPNE/KRAS and HPNE cells. And we revealed that P4HA1 is overexpressed in PDAC tumors, compared to normal and inflamed pancreatic tissues. RNA interference revealed that P4HA1 activity was primarily responsible for Hyp-BK production. Mass spectrometry analysis revealed that plasma Hyp-BK/BK ratio was higher in PDAC than pancreatitis patients and healthy controls, while the area under the receiver operating characteristic (ROC) curve (AUC) is 0.8209 (95%CI, 0.7269–0.9149). The Hyp-BK/BK association with PDAC was reproduced in another cohort, where this ratio was found to increase with advancing tumor stage. These novel findings paved the way for wider applications of Nanotrap coupled mass spectrometry as a powerful tool for revealing biosignatures from plasma.
Di Meo, A.; Pasic, M. D.; Yousef, G. M. Proteomics and peptidomics: Moving toward precision medicine in urological malignancies. Oncotarget 2016, 7, 52460–52474.
Dallas, D. C.; Guerrero, A.; Parker, E. A.; Robinson, R. C.; Gan, J. A.; German, J. B.; Barile, D.; Lebrilla, C. B. Current peptidomics: Applications, purification, identification, quantification, and functional analysis. Proteomics 2015, 15, 1026–1038.
Hu, Y.; Bouamrani, A.; Tasciotti, E.; Li, L.; Liu, X. W.; Ferrari, M. Tailoring of the nanotexture of mesoporous silica films and their functionalized derivatives for selectively harvesting low molecular weight protein. ACS Nano 2010, 4, 439–451.
Vincent, A.; Herman, J.; Schulick, R.; Hruban, R. H.; Goggins, M. Pancreatic cancer. Lancet 2011, 378, 607–620.
Ying, H. Q.; Kimmelman, A. C.; Lyssiotis, C. A.; Hua, S. J.; Chu, G. C.; Fletcher-Sananikone, E.; Locasale, J. W.; Son, J.; Zhang, H. L.; Coloff, J. L. et al. Oncogenic K-Ras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 2012, 149, 656–670.
Stram, A. R.; Payne, R. M. Post-translational modifications in mitochondria: Protein signaling in the powerhouse. Cell. Mol. Life Sci. 2016, 73, 4063–4073.
Rahimi, N.; Costello, C. E. Emerging roles of post-translational modifications in signal transduction and angiogenesis. Proteomics 2015, 15, 300–309.
Krueger, K. E.; Srivastava, S. Posttranslational protein modifications: Current implications for cancer detection, prevention, and therapeutics. Mol. Cell. Proteomics 2006, 5, 1799–1810.
Gorres, K. L.; Raines, R. T. Prolyl 4-hydroxylase. Crit. Rev. Biochem. Mol. Biol. 2010, 45, 106–124.
Ivan, M.; Kondo, K.; Yang, H. F.; Kim, W.; Valiando, J.; Ohh, M.; Salic, A.; Asara, J. M.; Lane, W. S.; Kaelin, W. G. Jr. HIF-α targeted for VHL-mediated destruction by proline hydroxylation: Implications for O2 sensing. Science 2001, 292, 464–468.
Jaakkola, P.; Mole, D. R.; Tian, Y. M.; Wilson, M. I.; Gielbert, J.; Gaskell, S. J.; von Kriegsheim, A.; Hebestreit, H. F.; Mukherji, M.; Schofield, C. J. et al. Targeting of HIF-α to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 2001, 292, 468–472.
Platt, W. D.; Doolittle, L. H.; Hartshorn, J. W. S. Urinary hydroxyproline excretion in metastatic cancer of bone. New Engl. J. Med. 1964, 271, 287–290.
Gilkes, D. M.; Chaturvedi, P.; Bajpai, S.; Wong, C. C.; Wei, H.; Pitcairn, S.; Hubbi, M. E.; Wirtz, D.; Semenza, G. L. Collagen prolyl hydroxylases are essential for breast cancer metastasis. Cancer Res. 2013, 73, 3285–3296.
Chakravarthi, B. V. S. K.; Pathi, S. S.; Goswami, M. T.; Cieslik, M.; Zheng, H.; Nallasivam, S.; Arekapudi, S. R.; Jing, X. J.; Siddiqui, J.; Athanikar, J. et al. The miR-124-prolyl hydroxylase P4HA1-MMP1 axis plays a critical role in prostate cancer progression. Oncotarget 2014, 5, 6654–6669.
Hezel, A. F.; Kimmelman, A. C.; Stanger, B. Z.; Bardeesy, N.; Depinho, R. A. Genetics and biology of pancreatic ductal adenocarcinoma. Genes Dev. 2006, 20, 1218–1249.
Chang, Z.; Ju, H. Q.; Ling, J. H.; Zhuang, Z. N.; Li, Z.; Wang, H. M.; Fleming, J. B.; Freeman, J. W.; Yu, D. H.; Huang, P. et al. Cooperativity of oncogenic K-Ras and downregulated p16/INK4A in human pancreatic tumorigenesis. PLoS One 2014, 9, e101452.
Hirsilä, M.; Koivunen, P.; Günzler, V.; Kivirikko, K. I.; Myllyharju, J. Characterization of the human prolyl 4-hydroxylases that modify the hypoxia-inducible factor. J. Biol. Chem. 2003, 278, 30772–30780.
Fan, J.; Gallagher, J. W.; Wu, H. J.; Landry, M. G.; Sakamoto, J.; Ferrari, M.; Hu, Y. Low molecular weight protein enrichment on mesoporous silica thin films for biomarker discovery. J. Vis. Exp. 2012, 62, e3876.
Fan, J.; Huang, Y.; Finoulst, I.; Wu, H. J.; Deng, Z. A.; Xu, R.; Xia, X. J.; Ferrari, M.; Shen, H. F.; Hu, Y. Serum peptidomic biomarkers for pulmonary metastatic melanoma identified by means of a nanopore-based assay. Cancer Lett. 2013, 334, 202–210.
Deng, Z. A.; Li, Y. J.; Fan, J.; Wang, G. H.; Li, Y.; Zhang, Y. O.; Cai, G. P.; Shen, H. F.; Ferrari, M.; Hu, T. Y. Circulating peptidome to indicate the tumor-resident proteolysis. Sci. Rep. 2015, 5, 9327.
Kukkola, L.; Hieta, R.; Kivirikko, K. I.; Myllyharju, J. Identification and characterization of a third human, rat, and mouse collagen prolyl 4-hydroxylase isoenzyme. J. Biol. Chem. 2003, 278, 47685–47693.
Schrader, M.; Schulz-Knappe, P.; Fricker, L. D. Historical perspective of peptidomics. EuPA Open Proteomics 2014, 3, 171–182.
Rhoads, R. E.; Udenfriend, S. Substrate specificity of collagen proline hydroxylase: Hydroxylation of a specific proline residue in bradykinin. Arch. Biochem. Biophys. 1969, 133, 108–111.
Kivirikko, K. I.; Myllylä, R. Posttranslational enzymes in the biosynthesis of collagen: Intracellular enzymes. Methods Enzymol. 1982, 82, 245–304.
Grant, R. P.; Hoofnagle, A. N. From lost in translation to paradise found: Enabling protein biomarker method transfer by mass spectrometry. Clin. Chem. 2014, 60, 941–944.
Hoofnagle, A. N.; Whiteaker, J. R.; Carr, S. A.; Kuhn, E.; Liu, T.; Massoni, S. A.; Thomas, S. N.; Townsend, R. R.; Zimmerman, L. J.; Boja, E. et al. Recommendations for the generation, quantification, storage, and handling of peptides used for mass spectrometry-based assays. Clin. Chem. 2016, 62, 48–69.
Lee, J. V.; Carrer, A.; Shah, S.; Snyder, N. W.; Wei, S. Z.; Venneti, S.; Worth, A. J.; Yuan, Z. F.; Lim, H. W.; Liu, S. C. et al. Akt-dependent metabolic reprogramming regulates tumor cell histone acetylation. Cell Metab. 2014, 20, 306–319.
Kontturi, M. J.; Sotaniemi, E. A.; Larmi, T. K. I. Hydroxyproline in the early diagnosis of bone metastases in prostatic cancer. Scand. J. Urol. Nephrol. 1974, 8, 91–95.
Hydroxyproline excretion in cancer. JAMA 1966, 198, 1208–1209.
Saito, J.; Imamura, Y.; Itoh, J.; Matsuyama, S.; Maruta, A.; Hayashi, T.; Sato, A.; Wada, N.; Kashiwazaki, K.; Inagaki, Y. et al. ELISA measurement for urinary 3-hydroxyproline-containing peptides and its preliminary application to healthy persons and cancer patients. Anticancer Res. 2010, 30, 1007–1014.
Yoneyama, T.; Ohtsuki, S.; Ono, M.; Ohmine, K.; Uchida, Y.; Yamada, T.; Tachikawa, M.; Terasaki, T. Quantitative targeted absolute proteomics-based large-scale quantification of proline-hydroxylated α-fibrinogen in plasma for pancreatic cancer diagnosis. J. Proteome Res. 2013, 12, 753–762.
Taylor, C. R.; Levenson, R. M. Quantification of immunohistochemistry— Issues concerning methods, utility and semiquantitative assessment Ⅱ. Histopathology 2006, 49, 411–424.
Liotta, L. A.; Ferrari, M.; Petricoin, E. Clinical proteomics: Written in blood. Nature 2003, 425, 905.
Petricoin, E. F.; Belluco, C.; Araujo, R. P.; Liotta, L. A. The blood peptidome: A higher dimension of information content for cancer biomarker discovery. Nat. Rev. Cancer 2006, 6, 961–967.
Fan, J.; Deng, X. Y.; Gallagher, J. W.; Huang, H. Y.; Huang, Y.; Wen, J. G.; Ferrari, M.; Shen, H. F.; Hu, Y. Monitoring the progression of metastatic breast cancer on nanoporous silica chips. Philos. Trans. A Math. Phys. Eng. Sci. 2012, 370, 2433–2447.
Ono, M.; Matsubara, J.; Honda, K.; Sakuma, T.; Hashiguchi, T.; Nose, H.; Nakamori, S.; Okusaka, T.; Kosuge, T.; Sata, N. et al. Prolyl 4-hydroxylation of α-fibrinogen: A novel protein modification revealed by plasma proteomics. J. Biol. Chem. 2009, 284, 29041–29049.
Golias, C.; Charalabopoulos, A.; Stagikas, D.; Charalabopoulos, K.; Batistatou, A. The kinin system—Bradykinin: Biological effects and clinical implications. Multiple role of the kinin system--bradykinin. Hippokratia 2007, 11, 124–128.
Greco, S.; Elia, M. G.; Muscella, A.; Romano, S.; Storelli, C.; Marsigliante, S. Bradykinin stimulates cell proliferation through an extracellular-regulated kinase 1 and 2-dependent mechanism in breast cancer cells in primary culture. J. Endocrinol. 2005, 186, 291–301.
Yu, H. S.; Lin, T. H.; Tang, C. H. Bradykinin enhances cell migration in human prostate cancer cells through B2 receptor/PKCδ/c-Src dependent signaling pathway. Prostate 2013, 73, 89–100.
Montana, V.; Sontheimer, H. Bradykinin promotes the chemotactic invasion of primary brain tumors. J. Neurosci. 2011, 31, 4858–4867.
Maeda, H.; Matsumura, Y.; Kato, H. Purification and identification of[hydroxyprolyl3]bradykinin in ascitic fluid from a patient with gastric cancer. J. Biol. Chem. 1988, 263, 16051–16054.