Graphical Abstract

In view of it's strong antibacterial function and minor toxicity, cuprous oxide (Cu2O) is frequently used in various broad-spectrum antibacterial reagents. Nonetheless the undesirable effects of superbugs still remain challenging. In this research, a chemical deposition approach is used to prepare a Cu2O@ZrP composite with nanosheet configuration demonstrating excellent dispersibility and antibacterial traits. From systematic analysis, it was inffered that the content of copper in the nanosheet was about 57–188 mg/g while the average thickness of the nanosheets Cu2O formed on ZrP is approximately 0.8 nm. The results of the minimal inhibitory concentration (MIC) revealed that an extremely low loading of Cu2O in Cu2O@ZrP nanosheet can lead to exceptional antibacterial activity. Examined on two various superbugs; i.e. methicillin-resistant staphylococcus aureus (MRSA) and vancomycin-resistant enterococcus (VRE), the composite nanosheet reagent performed over 99% microbial reduction. More intesetingly, the cell growth rate of the Cu2O@ZrP nanosheet was determined to be 20% lower than that of the neat Cu2O, manifesting a weaker cytotoxicity. This unique hybrid nanosheet with intriguing anti-superbug performance promises highly efficient protection for the fabrics, battledress, and medical textiles.
Raghupathi, K. R.; Koodali, R. T.; Manna, A. C. Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 2011, 27, 4020–4028.
Dong, C. X.; He, G. H.; Zheng, W. J.; Bian, T. F.; Li, M.; Zhang, D. W. Study on antibacterial mechanism of Mg(OH)2 nanoparticles. Mater. Lett. 2014, 134, 286–289.
Qiu, K. Y.; Durham, P. G.; Anselmo, A. C. Inorganic nanoparticles and the microbiome. Nano Res. 2018, 11, 4936–4954.
Perelshtein, I.; Lipovsky, N.; Perkas N.; Gedanken, A.; Moschini, E.; Mantecca, P. The influence of the crystalline nature of nano-metal oxides on their antibacterial and toxicity properties. Nano Res. 2015, 8, 695–707.
Asati, A.; Santra, S.; Kaittanis, C.; Perez, J. M. Surface-charge-dependent cell localization and cytotoxicity of cerium oxide nanoparticles. ACS Nano 2010, 4, 5321–5331.
Chudasama, B.; Vala, A. K.; Andhariya, N.; Upadhyay, R. V.; Mehta, R. V. Enhanced antibacterial activity of bifunctional Fe3O4-Ag core–shell nanostructures. Nano Res. 2009, 2, 955–965.
AshaRani, P. V.; Mun, G. L. K.; Hande, M. P.; Valiyaveettil, S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 2009, 3, 279–290.
Wu, Y. A.; Li, L.; Li, Z.; Kinaci, A.; Chan, M. K. Y.; Sun, Y. G.; Guest, J. R.; McNulty, I.; Rajh, T.; Liu, Y. Z. Visualizing redox dynamics of a single Ag/AgCl heterogeneous nanocatalyst at atomic resolution. ACS Nano 2016, 10, 3738–3746.
Zhou, Y. Z.; Chen, R.; He, T. T.; Xu, K.; Du, D.; Zhao, N.; Cheng, X. N.; Yang, J.; Shi, H. F.; Lin, Y. H. Biomedical potential of ultrafine Ag/AgCl nanoparticles coated on graphene with special reference to antimicrobial performances and burn wound healing. ACS Appl. Mater. Interfaces 2016, 8, 15067–15075.
Yin, M.; Wu, C. K.; Lou, Y. B.; Burda, C.; Koberstein, J. T.; Zhu, Y. M.; O'Brien, S. Copper oxide nanocrystals. J. Am. Chem. Soc. 2005, 127, 9506–9511.
Liu, L. M.; Yang, W. Y.; Sun, W. Z.; Li, Q.; Shang, J. K. Creation of Cu2O@TiO2 composite photocatalysts with p-n heterojunctions formed on exposed Cu2O facets, their energy band alignment study, and their enhanced photocatalytic activity under illumination with visible light. ACS Appl. Mater. Interfaces 2015, 7, 1465–1476.
Malka, E.; Perelshtein, I.; Lipovsky, A.; Shalom, Y.; Naparstek, L.; Perkas, N.; Patick, T.; Lubart, R.; Nitzan, Y.; Banin, E. et al. Eradication of multi-drug resistant bacteria by a novel Zn-doped CuO nanocomposite. Small 2013, 9, 4069–4076.
Giannousi, K.; Sarafidis, G.; Mourdikoudis, S.; Pantazaki, A.; Dendrinou-Samara, C. Selective synthesis of Cu2O and Cu/Cu2O NPs: Antifungal activity to yeast Saccharomyces cerevisiae and DNA interaction. Inorg. Chem. 2014, 53, 9657–9666.
Yao, K. X.; Yin, X. M.; Wang, T. H.; Zeng, H. C. Synthesis, self-assembly, disassembly, and reassembly of two types of Cu2O nanocrystals unifaceted with {001} or {110} planes. J. Am. Chem. Soc. 2010, 132, 6131–6144.
Susman, M. D.; Feldman, Y.; Vaskevich, A.; Rubinstein, I. Chemical deposition of Cu2O nanocrystals with precise morphology control. ACS Nano 2014, 8, 162–174.
Sui, Y. M.; Fu, W. Y.; Yang, H. B.; Zeng, Y.; Zhang, Y. Y.; Zhao, Q.; Li, Y. N.; Zhou, X. M.; Leng, Y.; Li, M. H. et al. Low temperature synthesis of Cu2O crystals: Shape evolution and growth mechanism. Cryst. Growth Des. 2010, 10, 99–108.
Siegfried, M. J.; Choi, K. S. Elucidating the effect of additives on the growth and stability of Cu2O surfaces via shape transformation of pre-grown crystals. J. Am. Chem. Soc. 2006, 128, 10356–10357.
Ren, J.; Wang, W. Z.; Sun, S. M.; Zhang, L.; Wang, L.; Chang, J. Crystallography facet-dependent antibacterial activity: The case of Cu2O. Ind. Eng. Chem. Res. 2011, 50, 10366–10369.
Pang, H.; Gao, F.; Lu, Q. Y. Morphology effect on antibacterial activity of cuprous oxide. Chem. Commun. 2009, 1076–1078.
Radi, A.; Pradhan, D.; Sohn, Y.; Leung, K. T. Nanoscale shape and size control of cubic, cuboctahedral, and octahedral Cu-Cu2O core–shell nanoparticles on Si(100) by one-step, templateless, capping-agent-free electrodeposition. ACS Nano 2010, 4, 1553–1560.
Stankic, S.; Suman, S.; Haque, F.; Vidic, J. Pure and multi metal oxide nanoparticles: Synthesis, antibacterial and cytotoxic properties. J. Nanobiotechnol. 2016, 14, 73.
Sun, S. D. Recent advances in hybrid Cu2O-based heterogeneous nanostructures. Nanoscale 2015, 7, 10850–10882.
Chen, G. Y.; Chen, T.; Hou, K.; Ma, W. J.; Tebyetekerwa, M.; Cheng, Y.; Weng, W.; Zhu, M. F. Robust, hydrophilic graphene/cellulose nanocrystal fiber-based electrode with high capacitive performance and conductivity. Carbon 2018, 127, 218–227.
Wang, D.; Kan, Y. C.; Yu, X. J.; Liu, J. J.; Song, L.; Hu, Y. In situ loading ultra-small Cu2O nanoparticles on 2D hierarchical TiO2-graphene oxide dual-nanosheets: Towards reducing fire hazards of unsaturated polyester resin. J. Hazard. Mater. 2016, 320, 504–512.
Lin, Y. F.; Wan, H.; Chen, F. S.; Liu, X. H.; Ma, R. Z.; Sasaki, T. Two-dimensional porous cuprous oxide nanoplatelets derived from metal-organic frameworks (MOFs) for efficient photocatalytic dye degradation under visible light. Dalton Trans. 2018, 47, 7694–7700.
Hrenovic, J.; Milenkovic, J.; Daneu, N.; Kepcija, R. M.; Rajic, N. Antimicrobial activity of metal oxide nanoparticles supported onto natural clinoptilolite. Chemosphere 2012, 88, 1103–1107.
Cai, R.; Yang, D.; Wu, J.; Zhang, L. Q.; Wu, C. C.; Chen, X. G.; Wang, Y. Y.; Wan, S.; Hou, F. W.; Yan, Q. Y. et al. Fabrication of ultrathin Zn(OH)2 nanosheets as drug carriers. Nano Res. 2016, 9, 2520–2530.
Xiao, H. P.; Liu, S. H. Zirconium phosphate (ZrP)-based functional materials: Synthesis, properties and applications. Mater. Design 2018, 155, 19–35.
Shao, W.; Liu, X. F.; Min, H. H.; Dong, G. H.; Feng, Q. Y.; Zuo, S. L. Preparation, characterization, and antibacterial activity of silver nanoparticle-decorated graphene oxide nanocomposite. ACS Appl. Mater. Interfaces 2015, 7, 6966–6973.
Madadrang, C. J.; Kim, H. Y.; Gao, G. H.; Wang, N.; Zhu, J.; Feng, H.; Gorring, M.; Kasner, M. L.; Hou, S. F. Adsorption behavior of EDTA-graphene oxide for Pb(Ⅱ) removal. ACS Appl. Mater. Interfaces 2012, 4, 1186–1193.
Gao, J. Y.; Wang, M. Z.; Wang, F. Y. K.; Du, J. Z. Synthesis and mechanism insight of a peptide-grafted hyperbranched polymer nanosheet with weak positive charges but excellent intrinsically antibacterial efficacy. Biomacromolecules 2016, 17, 2080–2086.
Dupont, D.; Brullot, W.; Bloemen, M.; Verbiest, T.; Binnemans, K. Selective uptake of rare earths from aqueous solutions by EDTA-functionalized magnetic and nonmagnetic nanoparticles. ACS Appl. Mater. Interfaces 2014, 7, 4980–4988.
Nabi, S. A.; Naushad, M.; Bushra, R. A new hybrid EDTA-zirconium phosphate cation-exchanger: Synthesis, characterization and adsorption behaviour for environmental monitoring. Adsorpt. Sci. Technol. 2009, 27, 423–434.
Xu, J. S.; Xue, D. F. Five branching growth patterns in the cubic crystal system: A direct observation of cuprous oxide microcrystals. Acta Mater. 2007, 55, 2397–2406.
Musho, T. D.; Wildfire, C.; Houlihan, N. M.; Sabolsky, E. M.; Shekhawat, D. Study of Cu2O particle morphology on microwave field enhancement. Mater. Chem. Phys. 2018, 216, 278–284.
Zhou, L. S.; Shen, F. P.; Tian, X. K.; Wang, D. H.; Zhang, T.; Chen, W. Stable Cu2O nanocrystals grown on functionalized graphene sheets and room temperature H2S gas sensing with ultrahigh sensitivity. Nanoscale 2013, 5, 1564–1569.
Liang, Y. H.; Shang, L.; Bian, T.; Zhou, C.; Zhang, D. H.; Yu, H. J.; Xu, H. T.; Shi, Z.; Zhang, T. R.; Wu, L. Z. et al. Shape-controlled synthesis of polyhedral 50-facet Cu2O microcrystals with high-index facets. Crystengcomm 2012, 14, 4431–4436.
Leng, M.; Liu, M. Z.; Zhang, Y. B.; Wang, Z. Q.; Yu, C.; Yang, X. G.; Zhang, H. J.; Wang, C. Polyhedral 50-facet Cu2O microcrystals partially enclosed by {311} high-index planes: Synthesis and enhanced catalytic CO oxidation activity. J. Am. Chem. Soc. 2010, 132, 17084–17087.
Sun, S. D.; Li, P. J.; Liang, S. H.; Yang, Z. M. Diversified copper sulfide (Cu2-xS) micro-/nanostructures: A comprehensive review on synthesis, modifications and applications. Nanoscale 2017, 32, 11357–11404.
Xiong, L. B.; Yu, H. Q.; Nie, C. J.; Xiao, Y. J.; Zeng, Q. D.; Wang, G. J.; Wang, B. Y.; Lv, H.; Li, Q. G.; Chen, S. S. Size-controlled synthesis of Cu2O nanoparticles: Size effect on antibacterial activity and application as a photocatalyst for highly efficient H2O2 evolution. RSC Adv. 2017, 7, 51822–51830.
Huang, W. C.; Lyu, L. M.; Yang, Y. C.; Huang, M. H. Synthesis of Cu2O nanocrystals from cubic to rhombic dodecahedral structures and their comparative photocatalytic activity. J. Am. Chem. Soc. 2012, 134, 1261–1267.
Wang, L.; Wu, X. L.; Xu, W. H.; Huang, X. J.; Liu, J. H.; Xu, A. W. Stable organic-inorganic hybrid of polyaniline/α-zirconium phosphate for efficient removal of organic pollutants in water environment. ACS Appl. Mater. Interfaces 2012, 4, 2686–2692.
Huang, J.; Ye, M.; Qu, Y. Q.; Chu, L. F.; Chen, R.; He, Q. Z.; Xu, D. F. Pb(Ⅱ) removal from aqueous media by EDTA-modified mesoporous silica SBA-15. J. Colloid Interface. Sci. 2012, 385, 137–146.
Jiang, Y. J.; Gao, Q. M.; Yu, H. G.; Chen, Y. R.; Deng, F. Intensively competitive adsorption for heavy metal ions by PAMAM-SBA-15 and EDTA-PAMAM-SBA-15 inorganic–organic hybrid materials. Micropor. Mesopor. Mater. 2007, 103, 316–324.
Li, B. J.; Li, Y. Y.; Zhao, Y. B.; Sun, L. Shape-controlled synthesis of Cu2O nano/microcrystals and their antibacterial activity. J. Phys. Chem. Solids 2013, 74, 1842–1847.
Chang, Y. N.; Zhang, M. Y.; Xia, L.; Zhang, J.; Xing, G. M. The toxic effects and mechanisms of CuO and ZnO nanoparticles. Materials 2012, 5, 2850–2871.
Applerot, G.; Lellouche, J.; Lipovsky, A.; Nitzan, Y.; Lubart, R.; Gedanken, A.; Banin, E. Understanding the antibacterial mechanism of CuO nanoparticles: Revealing the route of induced oxidative stress. Small 2012, 8, 3326–3337.
Cai, X.; Zhang, J. L.; Ouyang, Y.; Ma, D.; Tan, S. Z.; Peng, Y. L. Bacteria-adsorbed palygorskite stabilizes the quaternary phosphonium salt with specific-targeting capability, long-term antibacterial activity, and lower cytotoxicity. Langmuir 2013, 29, 5279–5285.
Cai, X.; Zhang, B.; Liang, Y. Y.; Zhang, J. L.; Yan, Y. H.; Chen, X. Y.; Wu, Z. M.; Liu, H. X.; Wen, S. P.; Tan, S. Z. et al. Study on the antibacterial mechanism of copper ion- and neodymium ion-modified α-zirconium phosphate with better antibacterial activity and lower cytotoxicity. Colloid. Surface. B Biointerfaces 2015, 132, 281–289.
Guo, J. N.; Xu, Q. M.; Zheng, Z. Q.; Zhou, S. B.; Mao, H. L.; Wang, B.; Yan, F. Intrinsically antibacterial poly(ionic liquid) membranes: The synergistic effect of anions. ACS Macro Lett. 2015, 4, 1094–1098.
Hu, W. B.; Peng, C.; Luo, W. J.; Lv, M.; Li, X. M.; Li, D.; Huang, Q.; Fan, C. H. Graphene-based antibacterial paper. ACS Nano 2010, 4, 4317–4323.
Abiraman, T.; Balasubramanian, S. Synthesis and characterization of large-scale (< 2 nm) chitosan-decorated copper nanoparticles and their application in antifouling coating. Ind. Eng. Chem. Res. 2017, 56, 1498–1508.
Bagchi, B.; Kar, S.; Dey, S. K.; Bhandary, S.; Roy, D.; Mukhopadhyay, T. K.; Das, S.; Nandy, P. In situ synthesis and antibacterial activity of copper nanoparticle loaded natural montmorillonite clay based on contact inhibition and ion release. Colloid. Surface. B Biointerfaces 2013, 108, 358–365.
Sahithya, K.; Das, D.; Das, N. Effective removal of dichlorvos from aqueous solution using biopolymer modified MMT-CuO composites: Equilibrium, kinetic and thermodynamic studies. J. Mol. Liq. 2015, 211, 821–830.
De, B.; Gupta, K.; Mandal, M.; Karak, N. Biocide immobilized OMMT-carbon dot reduced Cu2O nanohybrid/hyperbranched epoxy nanocomposites: Mechanical, thermal, antimicrobial and optical properties. Mat. Sci. Eng. C 2015, 56, 74–83.
Padmavathy, N.; Samantaray, P. K.; Das Ghosh, L.; Madras, G.; Bose, S. Selective cleavage of the polyphosphoester in crosslinked copper based nanogels: Enhanced antibacterial performance through controlled release of copper. Nanoscale 2017, 9, 12664–12676.
Chatterjee, A. K.; Chakraborty, R.; Basu, T. Mechanism of antibacterial activity of copper nanoparticles. Nanotechnology 2014, 25, 135101.
Gunawan, C.; Teoh, W. Y.; Marquis, C. P.; Amal, R. Cytotoxic origin of copper(Ⅱ) oxide nanoparticles: Comparative studies with micron-sized particles, leachate, and metal salts. ACS Nano 2011, 5, 7214–7225.
Ouyang, Y.; Cai, X.; Shi, Q. S.; Liu, L. L.; Wan, D L.; Tan, S. Z.; Ouyang, Y. S. Poly-L-lysine-modified reduced graphene oxide stabilizes the copper nanoparticles with higher water-solubility and long-term additively antibacterial activity. Colloid. Surface. B Biointerfaces 2013, 107, 107–114.
Cheng, Y. M.; Lu, J. T.; Liu, S. L.; Zhao, P.; Lu, G. Z.; Chen, J. H. The preparation, characterization and evaluation of regenerated cellulose/collagen composite hydrogel films. Carbohyd. Polym. 2014, 107, 57–64.
Bao, H. Z.; Zhang, Z. H.; Hua, Q.; Huang, W. X. Compositions, structures, and catalytic activities of CeO2@Cu2O nanocomposites prepared by the template-assisted method. Langmuir 2014, 30, 6427–6436.