Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Perovskite oxides are significant candidates to develop electrochemical catalysts for water oxidation in consideration of their high catalysis capacity, low costing and excellent stability. Rational design of coordination structure and overcoming poor electronic transport are regarded as critical factors for outstanding perovskite-based oxygen evolution reaction (OER) catalysts. Herein, we report a mild chemical oxidation method to realize ligancy engineering from strongly-correlated brownmillerite Sr2Co2O5 to perovskite phase Sr2Co2O55, along with abundant oxygen vacancies formation and greatly boosted electric conductivity, which helps to form the active species of Co hydroxide/oxide on the surface of catalysts. The coupling effect of catalytic kinetics and unimpeded electronic movement brings high OER activities in Sr2Co2O55with a low onset potential and a small Tafel slope. Our work not only displays in-depth understanding into the relationship among catalysis performance and multiple physical degrees of freedom, but also paves a new path to develop high-efficient electrochemical catalysts.
Khan, M. A.; Zhao, H. B.; Zou, W. W.; Chen, Z.; Cao, W. J.; Fang, J. H.; Xu, J. Q.; Zhang, L.; Zhang, J. J. Recent progresses in electrocatalysts for water electrolysis. Electrochem. Energy Rev. 2018, 1, 483-530.
Suen, N. T.; Hung, S. F.; Quan, Q.; Zhang, N.; Xu, Y. J.; Chen, H. M. Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives. Chem. Soc. Rev. 2017, 46, 337-365.
Tan, P.; Liu, M. L.; Shao, Z. P.; Ni, M. Recent advances in perovskite oxides as electrode materials for nonaqueous lithium-oxygen batteries. Adv. Energy Mater. 2017, 7, 1602674.
Song, F.; Bai, L. C.; Moysiadou, A.; Lee, S.; Hu, C.; Liardet, L.; Hu, X. L. Transition metal oxides as electrocatalysts for the oxygen evolution reaction in alkaline solutions: An application-inspired renaissance. J. Am. Chem. Soc. 2018, 140, 7748-7759.
Seitz, L. C.; Dickens, C. F.; Nishio, K.; Hikita, Y.; Montoya, J.; Doyle, A.; Kirk, C.; Vojvodic, A.; Hwang, H. Y.; Norskov, J. K. et al. A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction. Science 2016, 353, 1011-1014.
Rana, M.; Mondal, S.; Sahoo, L.; Chatterjee, K.; Karthik, P. E.; Gautam, U. K. Emerging materials in heterogeneous electrocatalysis involving oxygen for energy harvesting. ACS Appl. Mater. Interfaces 2018, 10, 33737-33767.
Royer, S.; Duprez, D.; Can, F.; Courtois, X.; Batiot-Dupeyrat, C.; Laassiri, S.; Alamdari, H. Perovskites as substitutes of noble metals for heterogeneous catalysis: dream or reality. Chem. Rev. 2014, 114, 10292-10368.
Hwang, J.; Rao, R. R.; Giordano, L.; Katayama, Y.; Yu, Y.; Shao-Horn, Y. Perovskites in catalysis and electrocatalysis. Science 2017, 358, 751-756.
Suntivich, J.; Gasteiger, H. A.; Yabuuchi, N.; Nakanishi, H.; Goodenough, J. B.; Shao-Horn, Y. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries. Nat. Chem. 2011, 3, 546-550.
Han, B. H.; Grimaud, A.; Giordano, L.; Hong, W. T.; Diaz-Morales, O.; Yueh-Lin, L.; Hwang, J.; Charles, N.; Stoerzinger, K. A.; Yang, W. L. et al. Iron-based perovskites for catalyzing oxygen evolution reaction. J. Phys. Chem. C 2018, 122, 8445-8454.
Mefford, J. T.; Rong, X.; Abakumov, A. M.; Hardin, W. G.; Dai, S.; Kolpak, A. M.; Johnston, K. P.; Stevenson, K. J. Water electrolysis on La1-xSrxCoO3-δ perovskite electrocatalysts. Nat. Commun. 2016, 7, 11053.
Lee, J. G.; Hwang, J.; Hwang, H. J.; Jeon, O. S.; Jang, J.; Kwon, O.; Lee, Y.; Han, B.; Shul, Y. G. A new family of perovskite catalysts for oxygen-evolution reaction in alkaline media: BaNiO3 and BaNi0.83O2.5. J. Am. Chem. Soc. 2016, 138, 3541-3547.
Malkhandi, S.; Trinh, P.; Manohar, A. K.; Manivannan, A.; Balasubramanian, M.; Prakash, G. K. S.; Narayanan, S. R. Design insights for tuning the electrocatalytic activity of perovskite oxides for the oxygen evolution reaction. J. Phys. Chem. C 2015, 119, 8004-8013.
Kim, N. I.; Sa, Y. J.; Yoo, T. S.; Choi, S. R.; Afzal, R. A.; Choi, T.; Seo, Y. S.; Lee, K. S.; Hwang, J. Y.; Choi, W. S. et al. Oxygen-deficient triple perovskites as highly active and durable bifunctional electrocatalysts for oxygen electrode reactions. Sci. Adv. 2018, 4, eaap9360.
Rong, X.; Parolin, J.; Kolpak, A. M. A fundamental relationship between reaction mechanism and stability in metal oxide catalysts for oxygen evolution. ACS Catal. 2016, 6, 1153-1158.
Wei, C.; Feng, Z. X.; Scherer, G. G.; Barber, J.; Shao-Horn, Y.; Xu, Z. J. Cations in octahedral sites: A descriptor for oxygen electrocatalysis on transition-metal spinels. Adv. Mater. 2017, 29, 1606800.
Grimaud, A.; Carlton, C. E.; Risch, M.; Hong, W. T.; May, K. J.; Shao-Horn, Y. Oxygen evolution activity and stability of Ba6Mn5O16, Sr4Mn2CoO9, and Sr6Co5O15: The influence of transition metal coordination. J. Phys. Chem. C 2013, 117, 25926-25932.
Bothra, N.; Rai, S.; Pati, S. K. Tailoring Ca2Mn2O5 based perovskites for improved oxygen evolution reaction. ACS Appl. Energy Mater. 2018, 1, 6312-6319.
Tong, Y.; Wu, J. C.; Chen, P. Z.; Liu, H. F.; Chu, W. S.; Wu, C. Z.; Xie, Y. Vibronic superexchange in double perovskite electrocatalyst for efficient electrocatalytic oxygen evolution. J. Am. Chem. Soc. 2018, 140, 11165-11169.
Kim, J.; Yin, X.; Tsao, K. C.; Fang, S. H.; Yang, H. Ca2Mn2O5 as oxygen-deficient perovskite electrocatalyst for oxygen evolution reaction. J. Am. Chem. Soc. 2014, 136, 14646-14649.
Grimaud, A.; May, K. J.; Carlton, C. E.; Lee, Y. L.; Risch, M.; Hong, W. T.; Zhou, J. G.; Shao-Horn, Y. Double perovskites as a family of highly active catalysts for oxygen evolution in alkaline solution. Nat. Commun. 2013, 4, 2439.
Guo, Y. Q.; Tong, Y.; Chen, P. Z.; Xu, K.; Zhao, J. Y.; Lin, Y.; Chu, W. S.; Peng, Z. M.; Wu, C. Z.; Xie, Y. Engineering the electronic state of a perovskite electrocatalyst for synergistically enhanced oxygen evolution reaction. Adv. Mater. 2015, 27, 5989-5994.
Takeda, Y.; Kanno, R.; Kondo, T.; Yamamoto, O.; Taguchi, H.; Shimada, M.; Koizumi, M. Properties of SrMO3-δ (M = Fe, Co) as oxygen electrodes in alkaline solution. J. Appl. Electrochem. 1982, 12, 275-280.
Jeen, H.; Bi, Z. H.; Choi, W. S.; Chisholm, M. F.; Bridges, C. A.; Paranthaman, M. P.; Lee, H. N. Orienting oxygen vacancies for fast catalytic reaction. Adv. Mater. 2013, 25, 6459-6463.
Muñoz, A.; de la Calle, C.; Alonso, J. A.; Botta, P. M.; Pardo, V.; Baldomir, D.; Rivas, J. Crystallographic and magnetic structure of SrCoO2. 5 brownmillerite: Neutron study coupled with band-structure calculations. Phys. Rev. B 2008, 78, 054404.
Bezdicka, P.; Wattiaux, A.; Grenier, J. C.; Pouchard, M.; Hagenmuller, P. Preparation and characterization of fully stoichiometric SrCoO3 by electrochemical oxidation. Z. Anorg. Allg. Chem. 1993, 619, 7-12.
Le Toquin, R.; Paulus, W.; Cousson, A.; Prestipino, C.; Lamberti, C. Time-resolved in situ studies of oxygen intercalation into SrCoO2.5, performed by neutron diffraction and X-ray absorption spectroscopy. J. Am. Chem. Soc. 2006, 128, 13161-13174.
Piovano, A.; Agostini, G.; Frenkel, A. I.; Bertier, T.; Prestipino, C.; Ceretti, M.; Paulus, W.; Lamberti, C. Time resolved in situ XAFS study of the electrochemical oxygen intercalation in SrFeO2.5 brownmillerite structure: Comparison with the homologous SrCoO2.5 system. J. Phys. Chem. C 2011, 115, 1311-1322.
Takeda, T.; Yamaguchi, Y.; Watanabe, H. Magnetic structure of SrCoO2.5. J. Phys. Soc. Jpn. 1972, 33, 970-972.
Gao, Y.; Wang, J. J.; Wu, L.; Bao, S. Y.; Yang, S.; Lin, Y. H.; Nan, C. W. Tunable magnetic and electrical behaviors in perovskite oxides by oxygen octahedral tilting. Sci. China Mater. 2015, 58, 302-312.
Lee, P. A.; Nagaosa, N.; Wen, X. G. Doping a mott insulator: Physics of high-temperature superconductivity. Rev. Mod. Phys. 2004, 78, 17-85.
Suntivich, J.; May, K. J.; Gasteiger, H. A.; Goodenough, J. B.; Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 2011, 334, 1383-1385.
Peng, X.; Guo, Y. Q.; Yin, Q.; Wu, J. C.; Zhao, J. Y.; Wang, C. M.; Tao, S.; Chu, W. S.; Wu, C. Z.; Xie, Y. Double-exchange effect in two-dimensional MnO2 nanomaterials. J. Am. Chem. Soc. 2017, 139, 5242-5248.
De Gennes, P. G. Effects of double exchange in magnetic crystals. Phys. Rev. 1960, 118, 141-154.
Hong, W. T.; Risch, M.; Stoerzinger, K. A.; Grimaud, A.; Suntivich, J.; Shao-Horn, Y. Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis. Energy Environ. Sci. 2015, 8, 1404-1427.
Wang, H. Y.; Hung, S. F.; Chen, H. Y.; Chan, T. S.; Chen, H. M.; Liu, B. In operando identification of geometrical-site-dependent water oxidation activity of spinel Co3O4. J. Am. Chem. Soc. 2015, 138, 36-39.
Riva, M.; Kubicek, M.; Hao, X. F.; Franceschi, G.; Gerhold, S.; Schmid, M.; Hutter, H.; Fleig, J.; Franchini, C.; Yildiz, B. et al. Influence of surface atomic structure demonstrated on oxygen incorporation mechanism at a model perovskite oxide. Nat. Commun. 2018, 9, 3710.
Cheng, X.; Fabbri, E.; Nachtegaal, M.; Castelli, I. E.; Kazzi, M. E.; Haumont, R.; Marzari, N.; Schmidt, T. J. Oxygen evolution reaction on La1-xSrxCoO3 perovskites: A combined experimental and theoretical study of their structural, electronic, and electrochemical properties. Chem. Mater. 2015, 27, 7662-7672.
Fabbri, E.; Nachtegaal, M.; Binninger, T.; Cheng, X.; Kim, B. J.; Durst, J.; Bozza, F.; Graule, T.; Schäublin, R.; Wiles, L. et al. Dynamic surface self-reconstruction is the key of highly active perovskite nano-electrocatalysts for water splitting. Nat. Mater. 2017, 16, 925-931.
Chen, P. Z.; Tong, Y.; Wu, C. Z.; Xie, Y. Surface/interfacial engineering of inorganic low-dimensional electrode materials for electrocatalysis. Acc. Chem. Res. 2018, 51, 2857-2866.
Jin, S. Are metal chalcogenides, nitrides, and phosphides oxygen evolution catalysts or bifunctional catalysts? ACS Energy Lett. 2017, 2, 1937-1938.
Xu, K.; Cheng, H.; Liu, L. Q.; Lv, H. F.; Wu, X. J.; Wu, C. Z.; Xie, Y. Promoting active species generation by electrochemical activation in alkaline media for efficient electrocatalytic oxygen evolution in neutral media. Nano Lett. 2016, 17, 578-583.
Chen, P. Z.; Xu, K.; Fang, Z. W.; Tong, Y.; Wu, J. C.; Lu, X. L.; Peng, X.; Ding, H.; Wu, C. Z.; Xie, Y. Metallic Co4N porous nanowire arrays activated by surface oxidation as electrocatalysts for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2016, 54, 14710-14714.