AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Enhancing oxygen evolution reaction by cationic surfactants

Qixian Xie§Daojin Zhou§Pengsong LiZhao CaiTianhui XieTengfei GaoRuida ChenYun Kuang( )Xiaoming Sun( )
State Key Laboratory of Chemical Resource EngineeringBeijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China

§ Qixian Xie and Daojin Zhou contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Oxygen evolution reaction is critical for water splitting or metal-air batteries, but previous research mainly focuses on electrode material or structure optimization. Herein, we demonstrate that surfactant modification of a NiFe layered double hydroxide (LDH) array electrode, one of the best catalysts for oxygen evolution reaction (OER), could achieve superaerophobic surface with balanced surface charges, affording fast mass transfer, quick gas release, and boosted OER performance. The assembled surfactants on the electrode surface are responsible for lowering the bubble adhesive force (~ 1.03 μN) and corresponding fast release of small bubbles generated during OER. In addition, the bipolar nature of the hexadecyl trimethyl ammonium bromide (CTAB) molecule lead to bilayer assembly of the surfactants with the polar ends facing the electrode surface and the electrolyte, resulting in neutralized charges on the electrode surface. As a result, OH- transfer was facilitated and OER performance was enhanced. With the modified superaerophobic surface and balanced surface charge, NiFe LDHs-CTAB nanostructured electrode showed ultrahigh current density increase (9.39 mA/(mV cm2)), 2.3 times higher than that for conventional NiFe LDH nanoarray electrode), dramatically fast gas release, and excellent durability. The introduction of surfactants to construct under-water superaerophobic electrode with in-time repelling ability to the as-formed gas bubbles may open up a new pathway for designing efficient electrodes for gas evolution systems with potentially practical application in the near future.

Electronic Supplementary Material

Download File(s)
12274_2019_2410_MOESM1_ESM.pdf (3.6 MB)

References

1

Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q. X.; Santori, E. A.; Lewis, N. S. Solar water splitting cells. Chem. Rev. 2010, 110, 6446-6473.

2

Zhou, H. Q.; Yu, F.; Zhu, Q.; Sun, J. J.; Qin, F.; Yu, L.; Bao, J. M.; Yu, Y.; Chen, S.; Ren, Z. F. Water splitting by electrolysis at high current densities under 1.6 volts. Energy Environ. Sci. 2018, 11, 2858-2864.

3

Yang, Y.; Dang, L. N.; Shearer, M. J.; Sheng, H. Y.; Li, W. J.; Chen, J.; Xiao, P.; Zhang, Y. H.; Hamers, R. J.; Jin, S. Highly active trimetallic NiFeCr layered double hydroxide electrocatalysts for oxygen evolution reaction. Adv. Energy Mater. 2018, 8, 1703189.

4

Luo, J. S.; Im, J. H.; Mayer, M. T.; Schreier, M.; Nazeeruddin, M. K.; Park, N. G.; Tilley, S. D.; Fan, H. J.; Grätzel, M. Water photolysis at 12.3% efficiency via perovskite photovoltaics and earth-abundant catalysts. Science 2014, 345, 1593-1596.

5

Tang, C.; Cheng, N. Y.; Pu, Z. H.; Xing, W.; Sun, X. P. Nise nanowire film supported on nickel foam: An efficient and stable 3D bifunctional electrode for full water splitting. Angew. Chem. , Int. Ed. 2015, 54, 9351-9355.

6

Ghausi, M. A.; Xie, J. F.; Li, Q. H.; Wang, X. Y.; Yang, R.; Wu, M. X.; Wang, Y. B.; Dai, L. M. CO2 overall splitting by a bifunctional metal-free electrocatalyst. Angew. Chem. , Int. Ed. 2018, 130, 13319-13323.

7

Schreier, M.; Héroguel, F.; Steier, L.; Ahmad, S.; Luterbacher, J. S.; Mayer, M. T.; Luo, J. S.; Grätzel, M. Solar conversion of CO2 to CO using earth-abundant electrocatalysts prepared by atomic layer modification of CuO. Nat. Energy. 2017, 2, 17087.

8

Cai, Z.; Bi, Y. M.; Hu, E. Y.; Liu, W.; Dwarica, N.; Tian, Y.; Li, X. L.; Kuang, Y.; Li, Y. P.; Yang, X. Q. et al. Single-crystalline ultrathin Co3O4 nanosheets with massive vacancy defects for enhanced electrocatalysis. Adv. Energy Mater. 2018, 8, 1701694.

9

Song, F.; Bai, L. C.; Moysiadou, A.; Lee, S.; Hu, C.; Liardet, L.; Hu, X. L. Transition metal oxides as electrocatalysts for the oxygen evolution reaction in alkaline solutions: an application-inspired renaissance. J. Am. Chem. Soc. 2018, 140, 7748-7759.

10

Xu, K.; Chen, P. Z.; Li, X. L.; Tong, Y.; Ding, H.; Wu, X. J.; Chu, W. S.; Peng, Z. M.; Wu, C. Z.; Xie, Y. Metallic nickel nitride nanosheets realizing enhanced electrochemical water oxidation. J. Am. Chem. Soc. 2015, 137, 4119-4125.

11

Stamenkovic, V. R.; Strmcnik, D.; Lopes, P. P.; Markovic, N. M. Energy and fuels from electrochemical interfaces. Nat. Mater. 2017, 16, 57-69.

12

Li, H. Y.; Chen, S. M.; Zhang, Y.; Zhang, Q. H.; Jia, X. F.; Zhang, Q.; Gu, L.; Sun, X. M.; Song, L.; Wang, X. Systematic design of superaerophobic nanotube-array electrode comprised of transition-metal sulfides for overall water splitting. Nat. Commun. 2018, 9, 2452.

13

Xu, W. W.; Lu, Z. Y.; Sun, X. M.; Jiang, L.; Duan, X. Superwetting electrodes for gas-involving electrocatalysis. Acc. Chem. Res. 2018, 51, 1590-1598.

14

Wang, Y. Y.; Zhang, Y. Q.; Liu, Z. J.; Xie, C.; Feng, S.; Liu, D. D.; Shao, M. F.; Wang, S. Y. Layered double hydroxide nanosheets with multiple vacancies obtained by dry exfoliation as highly efficient oxygen evolution electrocatalysts. Angew. Chem. , Int. Ed. 2017, 56, 5867-5871.

15

Wang, Y. Y.; Qiao, M.; Li, Y. F.; Wang, S. Y. Tuning surface electronic configuration of nife ldhs nanosheets by introducing cation vacancies (Fe or Ni) as highly efficient electrocatalysts for oxygen evolution reaction. Small 2018, 14, 1800136.

16

Lu, Z. Y.; Zhu, W.; Yu, X. Y.; Zhang, H. C.; Li, Y. J.; Sun, X. M.; Wang, X. W.; Wang, H.; Wang, J. M.; Luo, J. et al. Ultrahigh hydrogen evolution performance of under-water "superaerophobic" MoS2 nanostructured electrodes. Adv. Mater. 2014, 26, 2683-2687.

17

Lu, Z. Y.; Li, Y. J.; Lei, X. D.; Liu, J. F.; Sun, X. M. Nanoarray based "superaerophobic" surfaces for gas evolution reaction electrodes. Mater. Horiz. 2015, 2, 294-298.

18

Akbar, K.; Hussain, S.; Truong, L.; Roy, S. B.; Jeon, J. H.; Jerng, S. K.; Kim, M.; Yi, Y.; Jung, J.; Chun, S. H. Induced superaerophobicity onto a non-superaerophobic catalytic surface for enhanced hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2017, 9, 43674-43680.

19

Hao, J. H.; Yang, W. S.; Huang, Z. P.; Zhang, C. Superhydrophilic and superaerophobic copper phosphide microsheets for efficient electrocatalytic hydrogen and oxygen evolution. Adv. Mater. Interfaces 2016, 3, 1600236.

20

He, J. L.; Hu, B. B.; Zhao, Y. Superaerophobic electrode with metal@metal-oxide powder catalyst for oxygen evolution reaction. Adv. Funct. Mater. 2016, 26, 5998-6004.

21

Xu, W. W.; Lu, Z. Y.; Wan, P. B.; Kuang, Y.; Sun, X. M. High-performance water electrolysis system with double nanostructured superaerophobic electrodes. Small 2016, 12, 2492-2498.

22

Faber, M. S.; Dziedzic, R.; Lukowski, M. A.; Kaiser, N. S.; Ding, Q.; Jin, S. High-performance electrocatalysis using metallic cobalt pyrite (CoS2) micro- and nanostructures. J. Am. Chem. Soc. 2014, 136, 10053-10061.

23

Han, N. N.; Yang, K. R.; Lu, Z. Y.; Li, Y. J.; Xu, W. W.; Gao, T. F.; Cai, Z.; Zhang, Y.; Batista, V. S.; Liu, W. et al. Nitrogen-doped tungsten carbide nanoarray as an efficient bifunctional electrocatalyst for water splitting in acid. Nat. Commun. 2018, 9, 924.

24

Feng, G.; Kuang, Y.; Li, Y. J.; Sun, X. M. Three-dimensional porous superaerophobic nickel nanoflower electrodes for high-performance hydrazine oxidation. Nano Res. 2015, 8, 3365-3371.

25

Li, Y. J.; Zhang, H. C.; Jiang, M.; Kuang, Y.; Sun, X. M.; Duan, X. Ternary NiCoP nanosheet arrays: An excellent bifunctional catalyst for alkaline overall water splitting. Nano Res. 2016, 9, 2251-2259.

26

Su, B.; Tian, Y.; Jiang, L. Bioinspired interfaces with superwettability: From materials to chemistry. J. Am. Chem. Soc. 2016, 138, 1727-1748.

27

Ma, H. Y.; Cao, M. Y.; Zhang, C. H.; Bei, Z. L.; Li, K.; Yu, C. M.; Jiang, L. Directional and continuous transport of gas bubbles on superaerophilic geometry-gradient surfaces in aqueous environments. Adv. Funct. Mater. 2018, 28, 1705091.

28

Lu, Z. Y.; Xu, W. W.; Zhu, W.; Yang, Q.; Lei, X. D.; Liu, J. F.; Li, Y. P.; Sun, X. M.; Duan, X. Three-dimensional NiFe layered double hydroxide film for high-efficiency oxygen evolution reaction. Chem. Commun. 2014, 50, 6479-6482.

29

Zhang, W.; Wu, Y. Z.; Qi, J.; Chen, M. X.; Cao, R. A thin NiFe hydroxide film formed by stepwise electrodeposition strategy with significantly improved catalytic water oxidation efficiency. Adv. Energy Mater. 2017, 7, 1602547.

30

Xie, Q. X.; Cai, Z.; Li, P. S.; Zhou, D. J.; Bi, Y. M.; Xiong, X. Y.; Hu, E. Y.; Li, Y. P.; Kuang, Y.; Sun, X. M. Layered double hydroxides with atomic-scale defects for superior electrocatalysis. Nano Res. 2018, 11, 4524-4534.

31

Hou, Y.; Lohe, M. R.; Zhang, J.; Liu, S. H.; Zhuang, X. D.; Feng, X. L. Vertically oriented cobalt selenide/NiFe layered-double-hydroxide nanosheets supported on exfoliated graphene foil: an efficient 3D electrode for overall water splitting. Energy Environ. Sci. 2016, 9, 478-483.

32

Zhang, L.; Zhang, R.; Ge, R. X.; Ren, X.; Hao, S.; Xie, F. Y.; Qu, F. L.; Liu, Z. A.; Du, G.; Asiri, A. M. et al. Facilitating active species generation by amorphous NiFe-Bi layer formation on NiFe-LDH nanoarray for efficient electrocatalytic oxygen evolution at alkaline pH. Chem. —Eur. J. 2017, 23, 11499-11503.

Nano Research
Pages 2302-2306
Cite this article:
Xie Q, Zhou D, Li P, et al. Enhancing oxygen evolution reaction by cationic surfactants. Nano Research, 2019, 12(9): 2302-2306. https://doi.org/10.1007/s12274-019-2410-z
Topics:
Part of a topical collection:

781

Views

36

Crossref

N/A

Web of Science

37

Scopus

5

CSCD

Altmetrics

Received: 19 February 2019
Revised: 02 April 2019
Accepted: 08 April 2019
Published: 10 May 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return