AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Selective hydrogenation of N-heterocyclic compounds over rhodium-copper bimetallic nanocrystals under ambient conditions

Muhammad MateenKhadim ShahZheng Chen( )Chen ChenYadong Li
Department of Chemistry,Tsinghua University,Beijing,100084,China;
Show Author Information

Graphical Abstract

Abstract

Bimetallic nanocrystals (BMNCs) with distinguished electronic and chemical properties from those of their parent metals, offer the opportunity to obtain new catalysts with enhanced selectivity, activity, and stability. Here we describe the facile synthesis of rhodium-copper bimetallic system with different compositions and uniform morphology for chemo selective hydrogenation of functionalized quinolines. Our findings demonstrate that Rh-Cu BMNCs exhibited composition dependent activity and selectivity. BMNCs with rhodium to copper ratio 3:1 surpassed individual Rh and Cu and other compositions both in activity and selectivity for quinolines hydrogenation and performed even better than Rh/C with same amount of Rh. Rh3Cu1 catalyst displayed excellent tolerance for synthetically significant functional groups such as -OH, NH2, F, particularly for aldehyde group which is very reactive towards reduction. These results suggested that the coexistence of rhodium and copper metals play important role in the enhancement of catalytic activity due to synergistic effects and revealed that bimetallic nanocrystals can be promising as practical catalysts for selective hydrogenation of quinoline and other substrates.

Electronic Supplementary Material

Download File(s)
12274_2019_2411_MOESM1_ESM.pdf (1.6 MB)

References

1

Ren, D.; He, L.; Yu, L.; Ding, R. S.; Liu, Y. M.; Cao, Y.; He, H. Y.; Fan, K. N. An unusual chemoselective hydrogenation of quinoline compounds using supported gold catalysts. J. Am. Chem. Soc. 2012, 134, 17592-17598.

2

Sridharan, V.; Suryavanshi, P. A.; Menéndez, J. C. Advances in the chemistry of tetrahydroquinolines. Chem. Rev. 2011, 111, 7157-7259.

3

Shahane, S.; Louafi, F.; Moreau, J.; Hurvois, J. P.; Renaud, J. L.; van de Weghe, P.; Roisnel, T. Synthesis of alkaloids of Galipea officinalis by alkylation of an α-amino nitrile. Eur. J. Org. Chem. 2008, 2008, 4622-4631.

4

Pitts, M. R.; Harrison, J. R.; Moody, C. J. Indium metal as a reducing agent in organic synthesis. J. Chem. Soc. Perkin Trans. 1. 2001, 955-977.

5

Wang, D. S.; Chen, Q. A.; Lu, S. M.; Zhou, Y. G. Asymmetric hydrogenation of heteroarenes and arenes. Chem. Rev. 2012, 112, 2557-2590.

6

Karakulina, A.; Gopakumar, A.; Akçok, İ.; Roulier, B. L.; LaGrange, T.; Katsyuba, S. A.; Das, S.; Dyson, P. J. A rhodium nanoparticle-lewis acidic ionic liquid catalyst for the chemoselective reduction of heteroarenes. Angew. Chem., Int. Ed. 2016, 55, 292-296.

7

Ren, Y.; Wang, Y.; Li, X.; Zhang, Z.; Chi, Q. Selective hydrogenation of quinolines into 1, 2, 3, 4-tetrahydroquinolines over a nitrogen doped carbon- supported Pd catalyst. New J. Chem. 2018, 42, 16694-16702.

8

Wang, C.; Li, C. Q.; Wu, X. F.; Pettman, A.; Xiao, J. L. pH-regulated asymmetric transfer hydrogenation of quinolines in water. Angew. Chem., Int. Ed. 2009, 48, 6524-6528.

9

Zhao, M. T.; Yuan, K.; Wang, Y.; Li, G. D.; Guo, J.; Gu, L.; Hu, W. P.; Zhao, H. J.; Tang, Z. Y. Metal-organic frameworks as selectivity regulators for hydrogenation reactions. Nature 2016, 539, 76-80.

10

Zhao, M. T.; Deng, K.; He, L. C.; Liu, Y.; Li, G. D.; Zhao, H. J.; Tang, Z. Y. Core-shell palladium nanoparticle@metal-organic frameworks as multifunctional catalysts for cascade reactions. J. Am. Chem. Soc. 2014, 136, 1738-1741.

11

Schlögl, R. Heterogeneous catalysis. Angew. Chem., Int. Ed. 2015, 54, 3465-3520.

12

Chen, Y. G.; Yu, Z. J.; Chen, Z.; Shen, R. A.; Wang, Y.; Cao, X.; Peng, Q.; Li, Y. D. Controlled one-pot synthesis of RuCu nanocages and Cu@Ru nanocrystals for the regioselective hydrogenation of quinoline. Nano Res. 2016, 9, 2632-2640.

13

Hashimoto, N.; Takahashi, Y.; Hara, T.; Shimazu, S.; Mitsudome, T.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. Fine tuning of Pd0 nanoparticle formation on hydroxyapatite and its application for regioselective quinoline hydrogenation. Chem. Lett. 2010, 39, 832-834.

14

Dobereiner, G. E.; Nova, A.; Schley, N. D.; Hazari, N.; Miller, S. J.; Eisenstein, O.; Crabtree, R. H. Iridium-catalyzed hydrogenation of N-heterocyclic compounds under mild conditions by an outer-sphere pathway. J. Am. Chem. Soc. 2011, 133, 7547-7562.

15

Yu, W. T.; Porosoff, M. D.; Chen, J. G. Review of Pt-based bimetallic catalysis: From model surfaces to supported catalysts. Chem. Rev. 2012, 112, 5780-5817.

16

Liu, Y.; Chi, M. F.; Mazumder, V.; More, K. L.; Soled, S.; Henao, J. D.; Sun, S. H. Composition-controlled synthesis of bimetallic PdPt nanoparticles and their electro-oxidation of methanol. Chem. Mater. 2011, 23, 4199-4203.

17

Xiang, J.; Li, P.; Chong, H. B.; Feng, L.; Fu, F. Y.; Wang, Z.; Zhang, S. L.; Zhu, M. Z. Bimetallic Pd-Ni core-shell nanoparticles as effective catalysts for the Suzuki reaction. Nano Res. 2014, 7, 1337-1343.

18

Wang, Y. H.; Li, L. D.; Wu, K.; Si, R.; Sun, L. D.; Yan, C. H. Composition-tuned oxidation levels of Pt-Re bimetallic nanoparticles for the etherification of allylic alcohols. Nano Res. 2018, 11, 5902-5912.

19

Ahmadi, M.; Behafarid, F.; Cui, C. H.; Strasser, P.; Cuenya, B. R. Long-range segregation phenomena in shape-selected bimetallic nanoparticles: Chemical state effects. ACS Nano 2013, 7, 9195-9204.

20

Wang, W. Y.; Wang, D. S.; Liu, X. W.; Peng, Q.; Li, Y. D. Pt-Ni nanodendrites with high hydrogenation activity. Chem. Commun. 2013, 49, 2903-2905.

21

Ye, W.; Kou, S. F.; Guo, X.; Xie, F.; Sun, H. Y.; Lu, H. T.; Yang, J. Controlled synthesis of bimetallic Pd-Rh nanoframes and nanoboxes with high catalytic performances. Nanoscale 2015, 7, 9558-9562.

22

Xia, B. Q.; Chen, K.; Luo, W.; Cheng, G. Z. NiRh nanoparticles supported on nitrogen-doped porous carbon as highly efficient catalysts for dehydrogenation of hydrazine in alkaline solution. Nano Res. 2015, 8, 3472-3479.

23

Zhu, W.; Shan, J. J.; Nguyen, L.; Zhang S. R.; Tao, F. F.; Zhang, Y. W. Evolution of surface of Pd-Rh bimetallic nanocubes and its correlation with CO oxidation. Sci. China Mater. 2019, 62, 103-114.

24

Furukawa, S.; Takahashi, K.; Komatsu, T. Well-structured bimetallic surface capable of molecular recognition for chemoselective nitroarene hydrogenation. Chem. Sci. 2016, 7, 4476-4484.

25

Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z. W.; Huang, W. Y.; Xin, H. L.; Snyder, J. D.; Li, D. G.; Herron, J. A.; Mavrikakis, M. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339-1343.

26

Gilroy, K. D.; Ruditskiy, A.; Peng, H. C.; Qin, D.; Xia Y. N. Bimetallic nanocrystals: Syntheses, properties, and applications. Chem. Rev. 2016, 116, 10414-10472.

27

Mao, J. J.; Liu, Y. X.; Chen, Z.; Wang, D. S.; Li, Y. D. Bimetallic Pd-Cu nanocrystals and their tunable catalytic properties. Chem. Commun. 2014, 50, 4588-4591.

28

Fan, G. Y.; Wu, J. Mild hydrogenation of quinoline to decahydroquinoline over rhodium nanoparticles entrapped in aluminum oxy-hydroxide. Catal. Commun. 2013, 31, 81-85.

29

Campanati, M.; Vaccari, A.; Piccolo, O. Mild hydrogenation of quinoline: 1. Role of reaction parameters. J. Mol. Catal. A- Chem. 2002, 179, 287-292.

30

Sánchez, A.; Fang, M. F.; Ahmed, A.; Sánchez-Delgado, R. A. Hydrogenation of arenes, N-heteroaromatic compounds, and alkenes catalyzed by rhodium nanoparticles supported on magnesium oxide. Appl. Catal. A Gen. 2014, 477, 117-124.

31

Sharif, Md. J.; Yamazoe, S. : Tsukuda, T. Selective hydrogenation of 4-nitrobenzaldehyde to 4-aminobenzaldehyde by colloidal RhCu bimetallic nanoparticles. Top. Catal. 2014, 57, 1049-1053.

32

Park, J.; Kim, J.; Yang, Y.; Yoon, D.; Baik, H.; Haam, S.; Yang, H.; Lee, K. RhCu 3D nanoframe as a highly active electrocatalyst for oxygen evolution reaction under alkaline condition. Adv. Sci. 2016, 3, 1500252

33

Lin, J.; Chen, J.; Su, W. P. Rhodium-cobalt bimetallic nanoparticles: A catalyst for selective hydrogenation of unsaturated carbon-carbon bonds with hydrous hydrazine. Adv. Synth. Catal. 2013, 355, 41-46.

34

Jiang, B.; Kani, K.; Iqbal, M.; Abe, H.; Kimura, T.; Hossain, M. S. A.; Anjaneyulu, O.; Henzie, J.; Yamauchi, Y. Mesoporous bimetallic RhCu alloy nanospheres using a sophisticated soft-templating strategy. Chem. Mater. 2018, 30, 428-435.

35

Espinós, J. P.; Morales, J.; Barranco, A.; Caballero, A.; Holgado, J. P.; González-Elipe, A. R. Interface effects for Cu, CuO, and Cu2O deposited on SiO2 and ZrO2. XPS Determination of the valence state of copper in Cu/SiO2 and Cu/ZrO2 catalysts. J. Phys. Chem. B. 2002, 106, 6921-6929.

36

Yin, A. Y.; Guo, X. Y.; Dai, W. L.; Fan, K. N. The nature of active copper species in Cu-HMS catalyst for hydrogenation of dimethyl oxalate to ethylene glycol: New insights on the synergetic effect between Cu0 and Cu+. J. Phys. Chem. C. 2009, 113, 11003-11013.

Nano Research
Pages 1631-1634
Cite this article:
Mateen M, Shah K, Chen Z, et al. Selective hydrogenation of N-heterocyclic compounds over rhodium-copper bimetallic nanocrystals under ambient conditions. Nano Research, 2019, 12(7): 1631-1634. https://doi.org/10.1007/s12274-019-2411-y
Topics:

785

Views

19

Crossref

N/A

Web of Science

20

Scopus

0

CSCD

Altmetrics

Received: 29 January 2019
Revised: 25 March 2019
Accepted: 08 April 2019
Published: 25 April 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return