Graphical Abstract

Colloidal suspensions of plasmonic nanoparticles (NPs) are a well-established tool for biomedical applications and enhanced spectroscopy because of their strong optical response. The specific response is greatly dependent on the NP shape. The strong optical activity of chiral NPs has created special interest but fabrication of chiral NPs in solution remains challenging. Here, we present an approach whereby three-dimensional (3D) chiral Au nano-hooks, fabricated with the parallel hole-mask colloidal lithography (HMCL) method, can be lifted off from a glass substrate in a controllable manner by using a combined treatment with oxygen plasma oxidation and a reduction step in solution. This method has the advantage of being based on established techniques and not requiring strong acids or complex substrates as in etching based approaches. We furthermore demonstrate the integration of the hook NPs into reversibly cross-linked hydrogels inspired by mussel catechol chemistry but containing an oxidation resistant catechol analogue grafted onto poly(allylamine) crosslinked by coordination of Al3+ and how this facilitates the remote analysis of hydrogel microenvironment, e.g. the water content. The suspended particles are promising candidates for optically active surface-enhanced Raman spectroscopy (SERS), asymmetric photo catalysis or aggregation sensing. The integration into hydrogels to produce functional hydrogels holds benefits for applications of metamaterials in optics, sensing or activation in environmental remediation or drug delivery.
De Abajo, F. J. G. Nonlocal effects in the plasmons of strongly interacting nanoparticles, dimers, and waveguides. J. Phys. Chem. C 2008, 112, 17983- 17987.
McMahon, J. M.; Gray, S. K.; Schatz, G. C. Nonlocal optical response of metal nanostructures with arbitrary shape. Phys. Rev. Lett. 2009, 103, 097403.
Alvarez, M. M.; Khoury, J. T.; Schaaff, T. G.; Shafigullin, M. N.; Vezmar, I.; Whetten, R. L. Optical absorption spectra of nanocrystal gold molecules. J. Phys. Chem. B 1997, 101, 3706-3712.
Narayanan, R.; El-Sayed, M. A. Catalysis with transition metal nanoparticles in colloidal solution: Nanoparticle shape dependence and stability. J. Phys. Chem. B 2005, 109, 12663-12676.
Romo-Herrera, J. M.; Alvarez-Puebla, R. A.; Liz-Marzán, L. M. Controlled assembly of plasmonic colloidal nanoparticle clusters. Nanoscale 2011, 3, 1304-1315.
Huang, X. H.; Neretina, S.; El-Sayed, M. A. Gold nanorods: From synthesis and properties to biological and biomedical applications. Adv. Mater. 2009, 21, 4880-4910.
De, M.; Ghosh, P. S.; Rotello, V. M. Applications of nanoparticles in biology. Adv. Mater. 2008, 20, 4225-4241.
Grzelczak, M.; Pérez-Juste, J.; Mulvaney, P.; Liz-Marzán, L. M. Shape control in gold nanoparticle synthesis. Chem. Soc. Rev. 2008, 37, 1783- 1791.
Pérez-Juste, J.; Pastoriza-Santos, I.; Liz-Marzán, L. M.; Mulvaney, P. Gold nanorods: Synthesis, characterization and applications. Coord. Chem. Rev. 2005, 249, 1870-1901.
Jana, N. R.; Gearheart, L.; Murphy, C. J. Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J. Phys. Chem. B 2001, 105, 4065- 4067.
Smith, D. K.; Korgel, B. A. The importance of the CTAB surfactant on the colloidal seed-mediated synthesis of gold nanorods. Langmuir 2008, 24, 644-649.
Bohren, C. F.; Huffman, D. R. Absorption and Scattering of Light by Small Particles; Wiley: New York, 1998.
Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B 2003, 107, 668-677.
Morales-Dalmau, J.; Vilches, C.; De Miguel, I.; Sanz, V.; Quidant, R. Optimum morphology of gold nanorods for light-induced hyperthermia. Nanoscale 2018, 10, 2632-2638.
Novak, J. P.; Feldheim, D. L. Assembly of phenylacetylene-bridged silver and gold nanoparticle arrays. J. Am. Chem. Soc. 2000, 122, 3979-3980.
Bidault, S.; García De Abajo, F. J.; Polman, A. Plasmon-based nanolenses assembled on a well-defined DNA template. J. Am. Chem. Soc. 2008, 130, 2750-2751.
Brown, L. V.; Sobhani, H.; Lassiter, J. B.; Nordlander, P.; Halas, N. J. Heterodimers: Plasmonic properties of mismatched nanoparticle pairs. ACS Nano, 2010, 4, 819-832.
Rycenga, M.; Camargo, P. H. C.; Li, W. Y.; Moran, C. H.; Xia, Y. N. Understanding the SERS effects of single silver nanoparticles and their dimers, one at a time. J. Phys. Chem. Lett. 2010, 1, 696-703.
McPeak, K. M.; Van Engers, C. D.; Bianchi, S.; Rossinelli, A.; Poulikakos, L. V.; Bernard, L.; Herrmann, S.; Kim, D. K.; Burger, S.; Blome, M. et al. Ultraviolet plasmonic chirality from colloidal aluminum nanoparticles exhibiting charge-selective protein detection. Adv. Mater. 2015, 27, 6244- 6250.
Kuzyk, A.; Schreiber, R.; Fan, Z. Y.; Pardatscher, G.; Roller, E. M.; Högele, A.; Simmel, F. C.; Govorov, A. O.; Liedl, T. DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature 2012, 483, 311-314.
Li, Q. Y.; Lu, G. X. Controlled synthesis and photocatalytic investigation of different-shaped one-dimensional titanic acid nanomaterials. J. Power Sources 2008, 185, 577-583.
Chen, X. B.; Mao, S. S. Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem. Rev. 2007, 107, 2891- 2959.
Polavarapu, L.; Xu, Q. H. Water-soluble conjugated polymer-induced self-assembly of gold nanoparticles and its application to SERS. Langmuir 2008, 24, 10608-10611.
Li, Z. T.; Zhu, Z. N.; Liu, W. J.; Zhou, Y. L.; Han, B.; Gao, Y.; Tang, Z. Y. Reversible plasmonic circular dichroism of Au nanorod and DNA assemblies. J. Am. Chem. Soc. 2012, 134, 3322-3325.
Liu, W. J.; Zhu, Z. N.; Deng, K.; Li, Z. T.; Zhou, Y. L.; Qui, H. B.; Gao, Y.; Che, S. N.; Tang, Z. Y. Gold nanorod@Chiral mesoporous silica core-shell nanoparticles with unique optical properties. J. Am. Chem. Soc. 2013, 135, 9659-9664.
Wang, Z. L. The new field of nanopiezotronics. Mater. Today 2007, 10, 20-28.
Delclos, T.; Aimé, C.; Pouget, E.; Brizard, A.; Huc, I.; Delville, M. H.; Oda, R. Individualized silica nanohelices and nanotubes: Tuning inorganic nanostructures using lipidic self-assemblies. Nano Lett. 2008, 8, 1929-1935.
Qiao, Y.; Wang, Y. J.; Yang, Z. Y.; Lin, Y. Y.; Huang, J. B. Self-templating of metal-driven supramolecular self-assembly: A general approach toward 1D inorganic nanotubes. Chem. Mater. 2011, 23, 1182-1187.
Gansel, J. K.; Thiel, M.; Rill, M. S.; Decker, M.; Bade, K.; Saile, V.; von Freymann, G.; Linden, S.; Wegener, M. Gold helix photonic metamaterial as broadband circular polarizer. Science 2009, 325, 1513-1515.
Radke, A.; Gissibl, T.; Klotzbücher, T.; Braun, P. V.; Giessen, H. Three- dimensional bichiral plasmonic crystals fabricated by direct laser writing and electroless silver plating. Adv. Mater. 2011, 23, 3018-3021.
Guo, L. J. Nanoimprint lithography: Methods and material requirements. Adv. Mater. 2007, 19, 495-513.
Hulteen, J. C.; Van Duyne, R. P. Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces. J. Vac. Sci. Technol. A 1995, 13, 1553-1558.
Verre, R.; Shao, L.; Odebo Länk, N.; Karpinski, P.; Yankovich, A. B.; Antosiewicz, T. J.; Olsson, E.; Käll, M. Metasurfaces and colloidal suspensions composed of 3D chiral Si nanoresonators. Adv. Mater. 2017, 29, 1701352.
Verre, R.; Odebo Länk, N.; Andrén, D.; Šípová, H.; Käll, M. Large-scale fabrication of shaped high index dielectric nanoparticles on a substrate and in solution. Adv. Opt. Mater. 2018, 6, 1701253.
McPeak, K. M.; Van Engers, C. D.; Blome, M.; Park, J. H.; Burger, S.; Gosálvez, M. A.; Faridi, A.; Ries, Y. R.; Sahu, A.; Norris, D. J. Complex chiral colloids and surfaces via high-index off-cut silicon. Nano Lett. 2014, 14, 2934-2940.
Fredriksson, H.; Alaverdyan, Y.; Dmitriev, A.; Langhammer, C.; Sutherland, D. S.; Zäch, M.; Kasemo, B. Hole-mask colloidal lithography. Adv. Mater. 2007, 19, 4297-4302.
Frederiksen, M.; Sutherland, D. S. Direct modification of colloidal hole-masks for locally ordered hetero-assemblies of nanostructures over large areas. Nanoscale 2014, 6, 731-735.
Frank, B.; Yin, X. H.; Schäferling, M.; Zhao, J.; Hein, S. M.; Braun, P. V.; Giessen, H. Large-area 3D chiral plasmonic structures. ACS Nano 2013, 7, 6321-6329.
Fang, Y. R.; Verre, R.; Shao, L.; Nordlander, P.; Käll, M. Hot electron generation and cathodoluminescence nanoscopy of chiral split ring resonators. Nano Lett. 2016, 16, 5183-5190.
Krogsgaard, M.; Nue, V.; Birkedal, H. Mussel-inspired materials: Self-healing through coordination chemistry. Chem. -Eur. J. 2016, 22, 844-857.
Krogsgaard, M.; Behrens, M. A.; Pedersen, J. S.; Birkedal, H. Self-healing mussel-inspired multi-pH-responsive hydrogels. Biomacromolecules 2013, 14, 297-301.
Holten-Andersen, N.; Harrington, M. J.; Birkedal, H.; Lee, B. P.; Messersmith, P. B.; Lee, K. Y. C.; Waite, J. H. pH-induced metal-ligand cross-links inspired by mussel yield self-healing polymer networks with near-covalent elastic moduli. Proc. Natl. Acad. Sci. USA 2011, 108, 2651-2655.
Andersen, A.; Krogsgaard, M.; Birkedal, H. Mussel-inspired self-healing double-cross-linked hydrogels by controlled combination of metal coordination and covalent cross-linking. Biomacromolecules 2018, 19, 1402-1409.
Takano, Y.; Takahashi, J. I.; Kaneko, T.; Marumo, K.; Kobayashi, K. Asymmetric synthesis of amino acid precursors in interstellar complex organics by circularly polarized light. Earth Planet. Sci. Lett. 2007, 254, 106-114.
Thoniyot, P.; Tan, M. J.; Karim, A. A.; Young, D. J.; Loh, X. J. Nanoparticle-hydrogel composites: Concept, design, and applications of these promising, multi-functional materials. Adv. Sci. 2015, 21, 1400010.
Wang, C.; Flynn, N. T.; Langer, R. Controlled structure and properties of thermoresponsive nanoparticle-hydrogel composites. Adv. Mater. 2004, 16, 1074-1079.
Menyo, M. S.; Hawker, C. J.; Waite, J. H. Versatile tuning of supramolecular hydrogels through metal complexation of oxidation-resistant catechol- inspired ligands. Soft Matter 2013, 9, 10314-10323.
Yesilkoy, F.; Flauraud, V.; Rüegg, M.; Kim, B. J.; Brugger. J. 3D nanostructures fabricated by advanced stencil lithography. Nanoscale 2016, 8, 4945-4950.
Kontio, J. M.; Simonen, J.; Tommila, J.; Pessa, M. Arrays of metallic nanocones fabricated by UV-nanoimprint lithography. Microelectron. Eng. 2010, 87, 1711-1715.
Vazquez-Mena, O.; Villanueva, L. G.; Savu, V.; Sidler, K.; Langlet, P.; Brugger, J. Analysis of the blurring in stencil lithography. Nanotechnology 2009, 20, 415303.
Yunker, P. J.; Still, T.; Lohr, M. A.; Yodh, A. G. Suppression of the coffee-ring effect by shape-dependent capillary interactions. Nature 2011, 476, 308-311.
Deegan, R. D.; Bakajin, O.; Dupont, T. F.; Huber, G.; Nagel, S. R.; Witten, T. A. Capillary flow as the cause of ring stains from dried liquid drops. Nature 1997, 389, 827-829.
Hendry, E.; Carpy, T.; Johnston, J.; Popland, M.; Mikhaylovskiy, R. V.; Lapthorn, A. J.; Kelly, S. M.; Barron, L. D.; Gadegaard, N.; Kadodwala, M. Ultrasensitive detection and characterization of biomolecules using superchiral fields. Nat Nanotechnol 2010, 5, 783-787.
Liu, J. J. Optical properties of chiral plasmonic nanoparticles and mesoporous silicon nanowires. Ph. D. Dissertation, Hong Kong Baptist University, Hong Kong, China, 2017.
García-Guirado, J.; Svedendahl, M.; Puigdollers, J.; Quidant, R. Enantiomer- selective molecular sensing using racemic nanoplasmonic arrays. Nano Lett. 2018, 18, 6279-6285.
Kalinkin, A. V.; Smirnov, M. Y.; Bukhtiyarov, A. V.; Bukhtiyarov, V. I. XPS study of gold oxidation with nitrogen dioxide in model Au/C samples. Kinet. Catal. 2015, 56, 796-800.
Stadnichenko, A. I.; Koshcheev, S. V.; Boronin, A. I. Oxidation of the polycrystalline gold foil surface and XPS study of oxygen states in oxide layers. Moscow. Univ. Chem. Bull. 2007, 62, 343-349.
Juodkazis, K.; Juodkazytė, J.; Jasulaitienė, V.; Lukinskas, A.; Šebeka, B. XPS studies on the gold oxide surface layer formation. Electrochem. Commun. 2000, 2, 503-507.