Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Benzaldehyde byproduct is an imperative intermediate in the production of fine chemicals and additives. Tuning selectivity to benzaldehyde is therefore critical in alcohol oxidation reactions at the industrial level. Herein, we report a simple but innovative method for the synthesis of palladium hydride and nickel palladium hydride nanodendrites with controllable morphology, high stability, and excellent catalytic activity. The synthesized dendrites can maintain the palladium hydride phase even after their use in the chosen catalytic reaction. Remarkably, the high surface area morphology and unique interaction between nickel-rich surface and palladium hydride (β-phase) of these nanodendrites are translated in an enhanced catalytic activity for benzyl alcohol oxidation reaction. Our Ni/PdH0.43 nanodendrites demonstrated a high selectivity towards benzaldehyde of about 92.0% with a conversion rate of 95.4%, showing higher catalytic selectivity than their PdH0.43 counterparts and commercial Pd/C. The present study opens the door for further exploration of metal/metal-hydride nanostructures as next-generation catalytic materials.
Tian, N.; Zhou, Z. Y.; Sun, S. G.; Ding, Y.; Wang, Z. L. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 2007, 316, 732–735.
Wu, Z. C.; Zhang, Y.; Wang, B.; Qian, G. X.; Tao, T. X. Synthesis of palladium dendritic nanostructures on amidoxime modified polyacrylonitrile fibers through a complexing-reducing method. Mater. Sci. Eng. B 2013, 178, 923–929.
Zhu, G. M.; Jiang, Y. Y.; Lin, F.; Zhang, H.; Jin, C. H.; Yuan, J.; Yang, D. R.; Zhang, Z. In situ study of the growth of two-dimensional palladium dendritic nanostructures using liquid-cell electron microscopy. Chem. Commun. 2014, 50, 9447–9450.
Eid, K.; Ahmad, Y. H.; Yu, H. J.; Li, Y. H.; Li, X. N.; AlQaradawi, S. Y.; Wang, H. L.; Wang, L. Rational one-step synthesis of porous PtPdRu nanodendrites for ethanol oxidation reaction with a superior tolerance for CO-poisoning. Nanoscale 2017, 9, 18881–18889.
Lu, L. F.; Chen, S. T.; Thota, S.; Wang, X. D.; Wang, Y. C.; Zou, S. H.; Fan, J.; Zhao, J. Composition controllable synthesis of PtCu nanodendrites with efficient electrocatalytic activity for methanol oxidation induced by high index surface and electronic interaction. J. Phys. Chem. C 2017, 121, 19796–19806.
da Silva, A. G. M.; Rodrigues, T. S.; Slater, T. J. A.; Lewis, E. A.; Alves, R. S.; Fajardo, H. V.; Balzer, R.; da Silva, A. H. M.; de Freitas, I. C.; Oliveira, D. C. et al. Controlling size, morphology, and surface composition of AgAu nanodendrites in 15 s for improved environmental catalysis under low metal loadings. ACS Appl. Mater. Interfaces 2015, 7, 25624–25632.
Fu, S. F.; Zhu, C. Z.; Shi, Q. R.; Xia, H. B.; Du, D.; Lin, Y. H. Highly branched PtCu bimetallic alloy nanodendrites with superior electrocatalytic activities for oxygen reduction reactions. Nanoscale 2016, 8, 5076–5081.
Zhang, X. F.; Zhu, X. Y.; Feng, J. J.; Wang, A. J. Solvothermal synthesis of N-doped graphene supported PtCo nanodendrites with highly catalytic activity for 4-nitrophenol reduction. Appl. Surf. Sci. 2018, 428, 798–808.
Pillai, U. R.; Sahle-Demessie, E. Sn-exchanged hydrotalcites as catalysts for clean and selective Baeyer–Villiger oxidation of ketones using hydrogen peroxide. J. Mol. Catal. A: Chem. 2003, 191, 93–100.
Meng, C.; Yang, K.; Fu, X. Z.; Yuan, R. S. Photocatalytic oxidation of benzyl alcohol by homogeneous CuCl2/solvent: A model system to explore the role of molecular oxygen. ACS Catal. 2015, 5, 3760–3766.
Enache, D. I.; Edwards, J. K.; Landon, P.; Solsona-Espriu, B.; Carley, A. F.; Herzing, A. A.; Watanabe, M.; Kiely, C. J.; Knight, D. W.; Hutchings, G. J. Solvent-free oxidation of primary alcohols to aldehydes using Au-Pd/TiO2 catalysts. Science 2006, 311, 362–365.
Galvanin, F.; Sankar, M.; Cattaneo, S.; Bethell, D.; Dua, V.; Hutchings, G. J.; Gavriilidis, A. On the development of kinetic models for solvent-free benzyl alcohol oxidation over a gold-palladium catalyst. Chem. Eng. J. 2018, 342, 196–210.
Pillai, U. R.; Sahle-Demessie, E. Oxidation of alcohols over Fe3+/ montmorillonite-K10 using hydrogen peroxide. Appl. Catal. A: Gen. 2003, 245, 103–109.
Sheldon, R. A.; Kochi, J. K. Metal-Catalyzed Oxidations of Organic Compounds: Mechanistic Principles and Synthetic Methodology Including Biochemical Processes; Academic Press: New York, 1981.
Long, R.; Mao, K. K.; Ye, X. D.; Yan, W. S.; Huang, Y. B.; Wang, J. Y.; Fu, Y.; Wang, X. S.; Wu, X. J.; Xie, Y. et al. Surface facet of palladium nanocrystals: A key parameter to the activation of molecular oxygen for organic catalysis and cancer treatment. J. Am. Chem. Soc. 2013, 135, 3200–3207.
Mori, K.; Hara, T.; Mizugaki, T.; Ebitani, K.; Kaneda, K. Hydroxyapatite-supported palladium nanoclusters: A highly active heterogeneous catalyst for selective oxidation of alcohols by use of molecular oxygen. J. Am. Chem. Soc. 2004, 126, 10657–10666.
Liang, H. P.; Lawrence, N. S.; Wan, L. J.; Jiang, L.; Song, W. G.; Jones, T. G. J. Controllable synthesis of hollow hierarchical palladium nanostructures with enhanced activity for proton/hydrogen sensing. J. Phys. Chem. C 2008, 112, 338–344.
Yamauchi, M.; Ikeda, R.; Kitagawa, H.; Takata, M. Nanosize effects on hydrogen storage in palladium. J. Phys. Chem. C 2008, 112, 3294–3299.
Kumara, L. S. R.; Sakata, O.; Kobayashi, H.; Song, C.; Kohara, S.; Ina, T.; Yoshimoto, T.; Yoshioka, S.; Matsumura, S.; Kitagawa, H. Hydrogen storage and stability properties of Pd–Pt solid-solution nanoparticles revealed via atomic and electronic structure. Sci. Rep. 2017, 7, 14606.
Zhang, J. W.; Chen, M. S.; Li, H. Q.; Li, Y. J.; Ye, J. Y.; Cao, Z. M.; Fang, M. L.; Kuang, Q.; Zheng, J.; Xie, Z. X. Stable palladium hydride as a superior anode electrocatalyst for direct formic acid fuel cells. Nano Energy 2018, 44, 127–134.
Zhu, Y. Z.; Gao, C.; Bai, S.; Chen, S. M.; Long, R.; Song, L.; Li, Z. Q.; Xiong, Y. J. Hydriding Pd cocatalysts: An approach to giant enhancement on photocatalytic CO2 reduction into CH4. Nano Res. 2017, 10, 3396–3406.
Lu, Y. Z.; Wang, J.; Peng, Y. C.; Fisher, A.; Wang, X. Highly efficient and durable Pd hydride nanocubes embedded in 2D amorphous NiB nanosheets for oxygen reduction reaction. Adv. Energy Mater. 2017, 7, 1700919.
Weng, Z.; Liu, W.; Yin, L. C.; Fang, R. P.; Li, M.; Altman, E. I.; Fan, Q.; Li, F.; Cheng, H. M.; Wang, H. L. Metal/oxide interface nanostructures generated by surface segregation for electrocatalysis. Nano Lett. 2015, 15, 7704–7710.
Yi, W. Z.; Yuan, W. T.; Meng, Y.; Zou, S. H.; Zhou, Y. H.; Hong, W.; Che, J. W.; Hao, M. J.; Ye, B.; Xiao, L. P. et al. A rational solid-state synthesis of supported Au–Ni bimetallic nanoparticles with enhanced activity for gas-phase selective oxidation of alcohols. ACS Appl. Mater. Interfaces 2017, 9, 31853–31860.
Gao, L. J.; Wang, Y.; Li, H. B.; Li, Q. H.; Ta, N.; Zhuang, L.; Fu, Q.; Bao, X. H. A nickel nanocatalyst within a h-BN shell for enhanced hydrogen oxidation reactions. Chem. Sci. 2017, 8, 5728–5734.
Feng, Y. G.; Shao, Q.; Ji, Y. J.; Cui, X. N.; Li, Y. Y.; Zhu, X.; Huang, X. Q. Surface-modulated palladium-nickel icosahedra as high-performance non-platinum oxygen reduction electrocatalysts. Sci. Adv. 2018, 4, eaap8817.
Obradović, M. D.; Stančić, Z. M.; Lačnjevac, U. Č.; Radmilović, V. V.; Gavrilović-Wohlmuther, A.; Radmilović, V. R.; Gojković, S. L. Electrochemical oxidation of ethanol on palladium-nickel nanocatalyst in alkaline media. Appl. Catal. B: Environ. 2016, 189, 110–118.
Jiang, S. F.; Yi, B. L.; Zhao, Q.; Yu, H. M.; Shao, Z. G. Palladium–nickel catalysts based on ordered titanium dioxide nanorod arrays with high catalytic peformance for formic acid electro-oxidation. RSC Adv. 2017, 7, 11719–11723.
Dimitratos, N.; Lopez-Sanchez, J. A.; Morgan, D.; Carley, A. F.; Tiruvalam, R.; Kiely, C. J.; Bethell, D.; Hutchings, G. J. Solvent-free oxidation of benzyl alcohol using Au-Pd catalysts prepared by sol immobilisation. Phys. Chem. Chem. Phys. 2009, 11, 5142–5153.
Zhao, Z. P.; Huang, X. Q.; Li, M. F.; Wang, G. M.; Lee, C.; Zhu, E. B.; Duan, X. F.; Huang, Y. Synthesis of stable shape-controlled catalytically active β-palladium hydride. J. Am. Chem. Soc. 2015, 137, 15672–15675.
Wolf, R. J.; Lee, M. W.; Davis, R. C.; Fay, P. J.; Ray, J. R. Pressure-composition isotherms for palladium hydride. Phys. Rev. B 1993, 48, 12415–12418.
Flanagan, T. B.; Oates, W. A. The palladium-hydrogen system. Annu. Rev. Mater. Sci. 1991, 21, 269–304.
Eastman, J. A.; Thompson, L. J.; Kestel, B. J. Narrowing of the palladium-hydrogen miscibility gap in nanocrystalline palladium. Phys. Rev. B 1993, 48, 84–92.
Schirber, J. E.; Morosin, B. Lattice constants of β-PdHx and β-PdDx with x near 1.0. Phys. Rev. B 1975, 12, 117–118.
Xue, Z. H.; Li, M. Q.; Rao, H. H.; Yin, B.; Zhou, X. B.; Liu, X. H.; Lu, X. Q. Phase transformation-controlled synthesis of CuO nanostructures and their application as an improved material in a carbon-based modified electrode. RSC Adv. 2016, 6, 12829–12836.