AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Real-time Raman detection by the cavity mode enhanced Raman scattering

Yang Liu1,2,3Xiaorui Tian4Weiran Guo1,2,3Wenqiang Wang1,2,3Zhiqiang Guan1,2,3( )Hongxing Xu1,2,3,5( )
School of Physics and Technology,Wuhan University,Wuhan,430072,China;
Center for Nanoscience and Nanotechnology,Wuhan University,Wuhan,430072,China;
Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education,Wuhan University,Wuhan,430072,China;
College of Chemistry,Chemical Engineering and Materials Science, Shandong Normal University,Jinan,250014,China;
The Institute for Advanced Studies,Wuhan University,Wuhan,430072,China;
Show Author Information

Graphical Abstract

Abstract

Integrating surface enhanced Raman scattering (SERS) with microfluidics is the long-term goal for reduced volume, multiplex and automation fingerprint detection of biomolecules. High sensitivity, repeatability, stability, reusability and real-time detection are the performance goals of Raman detection in the aqueous solution environment. Here, we reported the study on cavity mode enhanced SERS detection of both surface-adsorbed molecules and non-surface-adsorbed molecules in the solution environment. The cavity modes had important influence on the SERS enhancement, especially for the non-surface adsorbed molecules. Uniform, repeatable, reusable and real-time Raman signal detection of the non-surface adsorbed Rhodamine 6G molecules was demonstrated. Our work is an important step for the practical on-chip microfluidic Raman detection applications.

Electronic Supplementary Material

Download File(s)
12274_2019_2414_MOESM1_ESM.pdf (1.6 MB)

References

1

Fleischmann, M.; Hendra, P. J.; McQuillan, A. J. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 1974, 26, 163-166.

2

Albrecht, M. G.; Creighton, J. A. Anomalously intense Raman spectra of pyridine at a silver electrode. J. Am. Chem. Soc. 1977, 99, 5215-5217.

3

Jeanmaire, D. L.; Van Duyne, R. P. Surface Raman spectroelectrochemistry: Part Ⅰ. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem. Interfacial Electrochem. 1977, 84, 1-20.

4

Kneipp, K.; Wang, Y.; Kneipp, H.; Perelman, L. T.; Itzkan, I.; Dasari, R. R.; Feld, M. S. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 1997, 78, 1667-1670.

5

Nie, S. M.; Emory, S. R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 1997, 275, 1102-1106.

6

Xu, H. X.; Bjerneld, E. J.; Käll, M.; Börjesson, L. Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys. Rev. Lett. 1999, 83, 4357-4360.

7

Camden, J. P.; Dieringer, J. A.; Wang, Y. M.; Masiello, D. J.; Marks, L. D.; Schatz, G. C.; Van Duyne, R. P. Probing the structure of single-molecule surface-enhanced Raman scattering hot spots. J. Am. Chem. Soc. 2008, 130, 12616-12617.

8

Dieringer, J. A.; Wustholz, K. L.; Masiello, D. J.; Camden, J. P.; Kleinman, S. L.; Schatz, G. C.; Van Duyne, R. P. Surface-enhanced Raman excitation spectroscopy of a single rhodamine 6G molecule. J. Am. Chem. Soc. 2009, 131, 849-854.

9

Lim, D. K.; Jeon, K. S.; Kim, H. M.; Nam, J. M.; Suh, Y. D. Nanogap- engineerable Raman-active nanodumbbells for single-molecule detection. Nat. Mater. 2009, 9, 60-67.

10

Zhang, R.; Zhang, Y.; Dong, Z. C.; Jiang, S.; Zhang, C.; Chen, L. G.; Zhang, L.; Liao, Y.; Aizpurua, J.; Luo, Y. et al. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature 2013, 498, 82-86.

11

Xu, H. X.; Aizpurua, J.; Käll, M.; Apell, P. Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering. Phys. Rev. E2000, 62, 4318-4324.

12

Cao, Y. C.; Jin, R. C.; Mirkin, C. A. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 2002, 297, 1536-1540.

13

Doering, W. E.; Nie, S. M. Spectroscopic tags using dye-embedded nanoparticles and surface-enhanced Raman scattering. Anal. Chem. 2003, 75, 6171-6176.

14

Qian, X. M.; Peng, X. H.; Ansari, D. O.; Yin-Goen, Q.; Chen, G. Z.; Shin, D. M.; Yang, L.; Young, A. N.; Wang, M. D.; Nie, S. M. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat. Biotechnol. 2008, 26, 83-90.

15

Graham, D.; Faulds, K. Quantitative SERRS for DNA sequence analysis. Chem. Soc. Rev. 2008, 37, 1042-1051.

16

Chen, Z.; Tabakman, S. M.; Goodwin, A. P.; Kattah, M. G.; Daranciang, D.; Wang, X. R.; Zhang, G. Y.; Li, X. L.; Liu, Z.; Utz, P. J. et al. Protein microarrays with carbon nanotubes as multicolor Raman labels. Nat. Biotechnol. 2008, 26, 1285-1292.

17

Porter, M. D.; Lipert, R. J.; Siperko, L. M.; Wang, G. F.; Narayanan, R. SERS as a bioassay platform: Fundamentals, design, and applications. Chem. Soc. Rev. 2008, 37, 1001-1011.

18

Chourpa, I.; Lei, F. H.; Dubois, P.; Manfait, M.; Sockalingum, G. D. Intracellular applications of analytical SERS spectroscopy and multispectral imaging. Chem. Soc. Rev. 2008, 37, 993-1000.

19

Chen, L. X.; Choo, J. Recent advances in surface-enhanced Raman scattering detection technology for microfluidic chips. Electrophoresis 2008, 29, 1815-1828.

20

Walter, A.; März, A.; Schumacher, W.; Rösch, P.; Popp, J. Towards a fast, high specific and reliable discrimination of bacteria on strain level by means of SERS in a microfluidic device. Lab Chip 2011, 11, 1013-1021.

21

Li, Q. L.; Li, B. W.; Wang, Y. Q. Surface-enhanced Raman scattering microfluidic sensor. RSC Adv. 2013, 3, 13015-13026.

22

Lee, H.; Xu, L. F.; Koh, D.; Nyayapathi, N.; Oh, K. W. Various on-chip sensors with microfluidics for biological applications. Sensors 2014, 14, 17008-17036.

23

Wang, C.; Yu, C. X. Analytical characterization using surface-enhanced Raman scattering (SERS) and microfluidic sampling. Nanotechnology 2015, 26, 092001.

24

Walter, R.; Tittl, A.; Berrier, A.; Sterl, F.; Weiss, T.; Giessen, H. Large-area low-cost tunable plasmonic perfect absorber in the near infrared by colloidal etching lithography. Adv. Opt. Mater. 2015, 3, 398-403.

25

Zhou, Q. T.; Kim, T. Review of microfluidic approaches for surface-enhanced Raman scattering. Sens. Actuators B: Chem. 2016, 227, 504-514.

26

Jahn, I. J.; Žukovskaja, O.; Zheng, X. S.; Weber, K.; Bocklitz, T. W.; Cialla-May, D.; Popp, J. Surface-enhanced Raman spectroscopy and microfluidic platforms: Challenges, solutions and potential applications. Analyst 2017, 142, 1022-1047.

27

Smith, W. E. Practical understanding and use of surface enhanced Raman scattering/surface enhanced resonance Raman scattering in chemical and biological analysis. Chem. Soc. Rev. 2008, 37, 955-964.

28

Zhu, W. Q.; Crozier, K. B. Quantum mechanical limit to plasmonic enhancement as observed by surface-enhanced Raman scattering. Nat. Commun. 2014, 5, 5228.

29

Schmidt, M. K.; Esteban, R.; González-Tudela, A.; Giedke, G.; Aizpurua, J. Quantum mechanical description of Raman scattering from molecules in plasmonic cavities. ACS Nano 2016, 10, 6291-6298.

30

Chen, W.; Zhang, S. P.; Kang, M.; Liu, W. K.; Ou, Z. W.; Li, Y.; Zhang, Y. X.; Guan, Z. Q.; Xu, H. X. Probing the limits of plasmonic enhancement using a two-dimensional atomic crystal probe. Light: Sci. Appl. 2018, 7, 56.

31

Mao, L.; Li, Z. P.; Wu, B.; Xu, H. X. Effects of quantum tunneling in metal nanogap on surface-enhanced Raman scattering. Appl. Phys. Lett. 2009, 94, 243102.

32

Zuloaga, J.; Prodan, E.; Nordlander, P. Quantum description of the plasmon resonances of a nanoparticle dimer. Nano Lett. 2009, 9, 887-891.

33

Esteban, R.; Borisov, A. G.; Nordlander, P.; Aizpurua, J. Bridging quantum and classical plasmonics with a quantum-corrected model. Nat. Commun. 2012, 3, 825.

34

Zhao, K.; Xu, H. X.; Gu, B. H.; Zhang, Z. Y. One-dimensional arrays of nanoshell dimers for single molecule spectroscopy via surface-enhanced Raman scattering. J. Chem. Phys. 2006, 125, 081102.

35

Song, Y. L.; Zhao, K.; Jia, Y.; Hu, X.; Zhang, Z. Y. Finite size effects on the electromagnetic field enhancement from low-dimensional silver nanoshell dimer arrays. J. Chem. Phys. 2008, 129, 204506.

36

Ausman, L. K.; Li, S. Z.; Schatz, G. C. Structural effects in the electromagnetic enhancement mechanism of surface-enhanced Raman scattering: Dipole reradiation and rectangular symmetry effects for nanoparticle arrays. J. Phys. Chem. C 2012, 116, 17318-17327.

37

Wang, Z. B.; Luk'yanchuk, B. S.; Guo, W.; Edwardson, S. P.; Whitehead, D. J.; Li, L.; Liu, Z.; Watkins, K. G. The influences of particle number on hot spots in strongly coupled metal nanoparticles chain. J. Chem. Phys. 2008, 128, 094705.

38

Yu, Q. M.; Guan, P.; Qin, D.; Golden, G.; Wallace, P. M. Inverted size-dependence of surface-enhanced Raman scattering on gold nanohole and nanodisk arrays. Nano Lett. 2008, 8, 1923-1928.

39

Xu, J. J.; Guan, P.; Kvasnička, P.; Gong, H.; Homola, J.; Yu, Q. M. Light transmission and surface-enhanced Raman scattering of quasi-3D plasmonic nanostructure arrays with deep and shallow Fabry-Pérot nanocavities. J. Phys. Chem. C 2011, 115, 10996-11002.

40

Liu, B. W.; Yao, X.; Chen, S.; Lin, H. X.; Yang, Z. L.; Liu, S.; Ren, B. Large-area hybrid plasmonic optical cavity (HPOC) substrates for surface- enhanced Raman spectroscopy. Adv. Funct. Mater. 2018, 28, 1802263.

41

Deng, X. G.; Braun, G. B.; Liu, S.; Sciortino Jr, P. F.; Koefer, B.; Tombler, T.; Moskovits, M. Single-order, subwavelength resonant nanograting as a uniformly hot substrate for surface-enhanced Raman spectroscopy. Nano Lett. 2010, 10, 1780-1786.

42

Guan, Z. Q.; Håkanson, U.; Anttu, N.; Wei, H.; Xu, H. Q.; Montelius, L.; Xu, H. X. Surface-enhanced Raman scattering on dual-layer metallic grating structures. Chin. Sci. Bull. 2010, 55, 2643-2648.

43

Baumberg, J. J.; Kelf, T. A.; Sugawara, Y.; Cintra, S.; Abdelsalam, M. E.; Bartlett, P. N.; Russell, A. E. Angle-resolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals. Nano Lett. 2005, 5, 2262-2267.

44

Dieringer, J. A.; McFarland, A. D.; Shah, N. C.; Stuart, D. A.; Whitney, A. V.; Yonzon, C. R.; Young, M. A.; Zhang, X. Y.; Van Duyne, R. P. Surface enhanced Raman spectroscopy: New materials, concepts, characterization tools, and applications. Faraday Discuss. 2006, 132, 9-26.

45

Kennedy, B. J.; Spaeth, S.; Dickey, M.; Carron, K. T. Determination of the distance dependence and experimental effects for modified SERS substrates based on self-assembled monolayers formed using alkanethiols. J. Phys. Chem. B 1999, 103, 3640-3646.

46

Babar, S.; Weaver, J. H. Optical constants of Cu, Ag, and Au revisited. Appl. Opt. 2015, 54, 477-481

47

Palik, E. D. Handbook of Optical Constants of Solids Ⅱ; Academic Press: Boston, 1991.

48

Robbie, K.; Brett, M. J. Sculptured thin films and glancing angle deposition: Growth mechanics and applications. J. Vac. Sci. Technol. A 1997, 15, 1460-1465.

49

Hildebrandt, P.; Stockburger, M. Surface-enhanced resonance Raman spectroscopy of Rhodamine 6G adsorbed on colloidal silver. J. Phys. Chem. 1984, 88, 5935-5944.

50

Anttu, N.; Guan, Z. Q.; Håkanson, U.; Xu, H. X.; Xu, H. Q. Excitations of surface plasmon polaritons in double layer metal grating structures. Appl. Phys. Lett. 2012, 100, 91111.

51

Li, Q.; Jiao, X.; Wang, P.; Ming, H.; Xie, J. Analysis of novel optical properties of subwavelength double-layers metallic grating. Appl. Phys. B 2005, 81, 787-790.

52

Tian, Z. Q.; Ren, B.; Wu, D. Y. Surface-enhanced Raman scattering:  From noble to transition metals and from rough surfaces to ordered nanostructures. J. Phys. Chem. B 2002, 106, 9463-9483.

53

Le Ru, E. C.; Blackie, E.; Meyer, M.; Etchegoin, P. G. Surface enhanced Raman scattering enhancement factors:  A comprehensive study. J. Phys. Chem. C 2007, 111, 13794-13803.

54

Orendorff, C. J.; Gole, A.; Sau, T. K.; Murphy, C. J. Surface-enhanced Raman spectroscopy of self-assembled monolayers:  Sandwich architecture and nanoparticle shape dependence. Anal. Chem. 2005, 77, 3261-3266.

55

Bao, Z. Y.; Lei, D. Y.; Jiang, R. B.; Liu, X.; Dai, J. Y.; Wang, J. F.; Chan, H. L. W.; Tsang, Y. H. Bifunctional au@Pt core-shell nanostructures for in situ monitoring of catalytic reactions by surface-enhanced Raman scattering spectroscopy. Nanoscale 2014, 6, 9063-9070.

56

Zhang, X. Y.; Zheng, Y. H.; Liu, X.; Lu, W.; Dai, J. Y.; Lei, D. Y.; MacFarlane, D. R. Hierarchical porous plasmonic metamaterials for reproducible ultrasensitive surface-enhanced Raman spectroscopy. Adv. Mater. 2015, 27, 1090-1096.

Nano Research
Pages 1643-1649
Cite this article:
Liu Y, Tian X, Guo W, et al. Real-time Raman detection by the cavity mode enhanced Raman scattering. Nano Research, 2019, 12(7): 1643-1649. https://doi.org/10.1007/s12274-019-2414-8
Topics:

787

Views

26

Crossref

N/A

Web of Science

23

Scopus

3

CSCD

Altmetrics

Received: 24 December 2018
Revised: 17 March 2019
Accepted: 10 April 2019
Published: 25 April 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return