AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

PtAu bimetallic nanocatalyst for selective hydrogenation of alkenes over aryl halides

Le Guo1,§Junjie Mao3,§Shuangxi Guo1Qi Zhang1Shuangfei Cai2( )Wei He1( )
School of Pharmaceutical Sciences,Tsinghua University,Beijing,100084,China;
CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety,Center of Materials Science and Optoelectronics Engineering, CAS center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences,Beijing,100190,China;
Center of Single-Atom,Clusters and Nanomaterials (CAN), Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University,Wuhu,241002,China;

§ Le Guo and Junjie Mao contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Herein, we present a new strategy that for the first time achieved chemo- and enantio-selective hydrogenation of alkenes over arylhalides. Key to the success is that instead of using external poisons, we use the composition of the bimetallic nanocrystal catalysts to control chemoselectivity (hydrogenation of C=C bonds without cleavage of Ar-X bonds). We further show that this system combined with surface modifying chiral ligands can control the enantioselectivity. Thus, after synthesizing and screening a series of easily accessible MxAuy (M = Pd, Pt; x, y = 1, 3, 5) bimetallic nanocrystals (9–10 nm) supported on activated carbon, we identified that Pt1Au1/C is a recyclable and generally applicable catalyst for the chemoselective hydrogenation of alkenes without cleaving aryl halogen bonds. Furthermore, cinchonidine modified Pt1Au1/C is shown to be capable of enantioselective hydrogenation, as illustrated by the rapid and enantio-enriched synthesis of RIP1 inhibitor analogue 7-Br-O-Nec1.

Electronic Supplementary Material

Download File(s)
12274_2019_2416_MOESM1_ESM.pdf (8.4 MB)

References

1

Valdez, C. A.; Tripp, J. C.; Miyamoto, Y.; Kalisiak, J.; Hruz, P.; Andersen, Y. S.; Brown, S. E.; Kangas, K.; Arzu, L. V.; Davids, B. J. et al. Synthesis and electrochemistry of 2-ethenyl and 2-ethanyl derivatives of 5-nitroimidazole and antimicrobial activity against Giardia lamblia. J. Med. Chem. 2009, 52, 4038-4053.

2

Choi, S.; Reixach, N.; Connelly, S.; Johnson, S. M.; Wilson, I. A.; Kelly, J. W. A substructure combination strategy to create potent and selective transthyretin kinetic stabilizers that prevent amyloidogenesis and cytotoxicity. J. Am. Chem. Soc. 2010, 132, 1359-1370.

3

Luethi, E.; Nguyen, K. T.; Bürzle, M.; Blum, L. C.; Suzuki, Y.; Hediger, M.; Reymond, J. L. Identification of selective norbornane-type aspartate analogue inhibitors of the glutamate transporter 1 (GLT-1) from the chemical universe generated database (GDB). J. Med. Chem. 2010, 53, 7236-7250.

4

Luker, T.; Bonnert, R.; Paine, S. W.; Schmidt, J.; Sargent, C.; Cook, A. R.; Cook, A.; Gardiner, P.; Hill, S.; Weyman-Jones, C. et al. Zwitterionic CRTh2 antagonists. J. Med. Chem. 2011, 54, 1779-1788.

5

Xia, Z. B.; Farhana, L.; Correa, R. G.; Das, J. K.; Castro, D. J.; Yu, J. H.; Oshima, R. G.; Reed, J. C.; Fontana, J. A.; Dawson, M. I. Heteroatomsubstituted analogues of orphan nuclear receptor small heterodimer partner ligand and apoptosis inducer (E)-4-[3-(1-Adamantyl)-4-hydroxyphenyl]-3-chlorocinnamic acid. J. Med. Chem. 2011, 54, 3793-3816.

6

Favia, A. D.; Habrant, D.; Scarpelli, R.; Migliore, M.; Albani, C.; Bertozzi, S. M.; Dionisi, M.; Tarozzo, G.; Piomelli, D.; Cavalli, A. et al. Identification and characterization of carprofen as a multitarget fatty acid amide hydrolase/cyclooxygenase inhibitor. J. Med. Chem. 2012, 55, 8807-8826.

7

Corbet, J. P.; Mignani, G. Selected patented cross-coupling reaction technologies. Chem. Rev. 2006, 106, 2651-2710.

8

Miyaura, N.; Suzuki, A. Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chem. Rev. 1995, 95, 2457-2483.

9

Hartwig, J. F. Approaches to catalyst discovery. New carbon-heteroatom and carbon-carbon bond formation. Pure Appl. Chem. 1999, 71, 1417-1423.

10

Surry, D. S.; Buchwald, S. L. Dialkylbiaryl phosphines in Pd-catalyzed amination: A user's guide. Chem. Sci. 2011, 2, 27-50.

11

Seevers, R. H.; Counsell, R. E. Radioiodination techniques for small organic molecules. Chem. Rev. 1982, 82, 575-590.

12

Erathodiyil, N.; Ooi, S.; Seayad, A. M.; Han, Y.; Lee, S. S.; Ying, J. Y. Palladium nanoclusters supported on propylurea-modified siliceous mesocellular foam for coupling and hydrogenation reactions. Chem. -Eur. J. 2008, 14, 3118-3125.

13

Zhu, C.; Yukimura, N.; Yamane, M. Synthesis of oxygen- and sulfur-bridged dirhodium complexes and their use as catalysts in the chemoselective hydrogenation of alkenes. Organometallics 2010, 29, 2098-2103.

14

Bennie, L. S.; Fraser, C. J.; Irvine, S.; Kerr, W. J.; Andersson, S.; Nilsson, G. N. Highly active iridium(Ⅰ) complexes for the selective hydrogenation of carbon-carbon multiple bonds. Chem. Commun. 2011, 47, 11653-11655.

15

Lindlar, H. Ein neuer katalysator für selektive hydrierungen. Helv. Chim. Acta. 1952, 35, 446-450.

16

Dovell, F. S.; Greenfield, H. Platinum metal sulfides as heterogeneous hydrogenation catalysts. J. Am. Chem. Soc. 1965, 87, 2767-2768.

17

Sajiki, H.; Hirota, K. Pd/C-catalyzed chemoselective hydrogenation in the presence of a phenolic MPM protective group using pyridine as a catalyst poison. Chem. Pharm. Bull. 2003, 51, 320-324.

18

Mori, A.; Miyakawa, Y.; Ohashi, E.; Haga, T.; Maegawa, T.; Sajiki, H. Pd/C-catalyzed chemoselective hydrogenation in the presence of diphenylsulfide. Org. Lett. 2006, 8, 3279-3281.

19

Bond, G. C.; Wells, P. B. The mechanism of the hydrogenation of unsaturated hydrocarbons on transition metal catalysts. Adv. Catal. 1965, 15, 91-226.

20

Teng, X.; Degterev, A.; Jagtap, P.; Xing, X. C.; Choi, S.; Denu, R.; Yuan, J. Y.; Cuny, G. D. Structure-activity relationship study of novel necroptosis inhibitors. Bioorg. Med. Chem. Lett. 2005, 15, 5039-5044.

21

Degterev, A.; Huang, Z. H.; Boyce, M.; Li, Y. Q.; Jagtap, P.; Mizushima, N.; Cuny, G. D.; Mitchison, T. J.; Moskowitz, M. A.; Yuan, J. Y. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat. Chem. Biol. 2005, 1, 112-119.

22

Nakamula, I.; Yamanoi, Y.; Imaoka, T.; Yamamoto, K.; Nishihara, H. A uniform bimetallic rhodium/iron nanoparticle catalyst for the hydrogenation of olefins and nitroarenes. Angew. Chem., Int. Ed. 2011, 50, 5830-5833.

23

Győrffy, N.; Paál, Z. Acrolein hydrogenation on PdPt powder catalysts prepared by colloid synthesis. J. Mol. Catal. A: Chem. 2008, 295, 24-28.

24

Tsang, S. C.; Cailuo, N.; Oduro, W.; Kong, A. T. S.; Clifton, L.; Yu, K. M. K.; Thiebaut, B.; Cookson, J.; Bishop, P. Engineering preformed cobalt-doped platinum nanocatalysts for ultraselective hydrogenation. ACS Nano 2008, 2, 2547-2553.

25

Wu, B, H.; Huang, H. Q.; Yang, J.; Zheng, N. F.; Fu, G. Selective hydrogenation of α, β-unsaturated aldehydes catalyzed by amine-capped platinum-cobalt nanocrystals. Angew. Chem., Int. Ed. 2012, 51, 3440-3443.

26

Wu, Y. E.; Cai, S. F.; Wang, D. S.; He, W.; Li, Y. D. Syntheses of watersoluble octahedral, truncated octahedral, and cubic Pt-Ni nanocrystals and their structure-activity study in model hydrogenation reactions. J. Am. Chem. Soc. 2012, 134, 8975-8981.

27

Cai, S. F.; Duan, H. H.; Rong, H. P.; Wang, D. S.; Li, L. S.; He, W.; Li, Y. D. Highly active and selective catalysis of bimetallic Rh3Ni1 nanoparticles in the hydrogenation of nitroarenes. ACS Catal. 2013, 3, 608-612.

28

Chen, Y. G.; Yu, Z. J.; Chen, Z.; Shen, R. A.; Wang, Y.; Cao, X.; Peng, Q.; Li, Y. D. Controlled one-pot synthesis of RuCu nanocages and Cu@Ru nanocrystals for the regioselective hydrogenation of quinoline. Nano Res. 2016, 9, 2632-2640.

29

Wu, C.; Chen, Y. F.; Shen, R. A.; Zhu, W.; Gong, Y.; Gu, L.; Peng, Q.; Guo, H. F.; He, W. The promoting effect of low-level sulfidation in PdCuS nanoparticles catalyzed alkyne semihydrogenation. Nano Res. 2018, 11, 4883-4889.

30

Li, L. S.; Niu, Z. Q.; Cai, S. F.; Zhi, Y.; Li, H.; Rong, H. P.; Liu, L. C.; Liu, L.; He, W.; Li, Y. D. A PdAg bimetallic nanocatalyst for selective reductive amination of nitroarenes. Chem. Commun. 2013, 49, 6843-6845.

31

Rong, H. P.; Cai, S. F.; Niu, Z. Q.; Li, Y. D. Composition-dependent catalytic activity of bimetallic nanocrystals: AgPd-catalyzed hydrodechlorination of 4-chlorophenol. ACS Catal. 2013, 3, 1560-1563.

32

Muñoz-Flores, B. M.; Kharisov, B. I.; Jiménez-Pérez, V. M.; Martínez, P. E.; López, S. T. Recent advances in the synthesis and main applications of metallic nanoalloys. Ind. Eng. Chem. Res. 2011, 50, 7705-7721.

33

Gu, J.; Zhang, Y. W.; Tao, F. Shape control of bimetallic nanocatalysts through well-designed colloidal chemistry approaches. Chem. Soc. Rev. 2012, 41, 8050-8065.

34

Wang, D. S.; Xie, T.; Li, Y. D. Nanocrystals: Solution-based synthesis and applications as nanocatalysts. Nano Res. 2009, 2, 30-46.

35

Wang, D. S.; Li, Y. D. One-pot protocol for Au-based hybrid magnetic nanostructures via a noble-metal-induced reduction process. J. Am. Chem. Soc. 2010, 132, 6280-6281.

36

Wang, D. S.; Li, Y. D. Bimetallic nanocrystals: Liquid-phase synthesis and catalytic applications. Adv. Mater. 2011, 23, 1044-1060.

37

Wu, J. B.; Zhang, J. L.; Peng, Z. M.; Yang, S. C.; Wagner, F. T.; Yang, H. Truncated octahedral Pt3Ni oxygen reduction reaction electrocatalysts. J. Am. Chem. Soc. 2010, 132, 4984-4985.

38

Tungler, A.; Sipos, E.; Hada, V. Heterogeneous catalytic asymmetric hydrogenation of the C=C bond. Current Org. Chem. 2006, 10, 1569-1583.

39

Huck, W. R.; Mallat, T.; Baiker, A. Enantioselective hydrogenation of a methoxypyrone with cinchona-modified palladium. Catal. Lett. 2002, 80, 87-92.

40

Fogassy, G.; Tungler, A.; Lévai, A. Enantioselective hydrogenation of exocyclic α, β-unsaturated ketones: Part Ⅲ. Hydrogenation with Pd in the presence of cinchonidine. J. Mol. Catal. A: Chem. 2003, 192, 189-194.

41

Chng, L. L.; Erathodiyil, N.; Ying, J. Y. Nanostructured catalysts for organic transformations. Acc. Chem. Res. 2013, 46, 1825-1837.

42

Cong, H.; Porco, J. A., Jr. Chemical synthesis of complex molecules using nanoparticle catalysis. ACS Catal. 2012, 2, 65-70.

43

Witham, C. A.; Huang, W. Y.; Tsung, C. K.; Kuhn, J. N.; Somorjai, G. A.; Toste, F. D. Converting homogeneous to heterogeneous in electrophilic catalysis using monodisperse metal nanoparticles. Nat. Chem. 2010, 2, 36-41.

Nano Research
Pages 1659-1662
Cite this article:
Guo L, Mao J, Guo S, et al. PtAu bimetallic nanocatalyst for selective hydrogenation of alkenes over aryl halides. Nano Research, 2019, 12(7): 1659-1662. https://doi.org/10.1007/s12274-019-2416-6
Topics:

825

Views

6

Crossref

N/A

Web of Science

5

Scopus

2

CSCD

Altmetrics

Received: 18 March 2019
Revised: 09 April 2019
Accepted: 10 April 2019
Published: 26 April 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return