Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
A reproducible synthetic strategy was developed for facile large-scale (200 mg) synthesis of surface silanized magnetite (Fe3O4) nanoparticles (NPs) for biological applications. After further coupling a phosphate-specific affinity ligand, these functionalized magnetic NPs were used for the highly specific enrichment of phosphoproteins from a complex biological mixture. Moreover, correlating the surface silane density of the silanized magnetite NPs to their resultant enrichment performance established a simple and reliable quality assurance control to ensure reproducible synthesis of these NPs routinely in large scale and optimal phosphoprotein enrichment performance from batch-to-batch. Furthermore, by successful exploitation of a top-down phosphoproteomics strategy that integrates this high throughput nanoproteomics platform with online liquid chromatography (LC) and tandem mass spectrometry (MS/MS), we were able to specifically enrich, identify, and characterize endogenous phosphoproteins from highly complex human cardiac tissue homogenate. This nanoproteomics platform possesses a unique combination of scalability, specificity, reproducibility, and efficiency for the capture and enrichment of low abundance proteins in general, thereby enabling downstream proteomics applications.
De, M.; Ghosh, P. S.; Rotello, V. M. Applications of nanoparticles in biology. Adv. Mater. 2008, 20, 4225–4241.
Mitragotri, S.; Anderson, D. G.; Chen, X. Y.; Chow, E. K.; Ho, D.; Kabanov, A. V; Karp, J. M.; Kataoka, K.; Mirkin, C. A.; Petrosko, S. H. et al. Accelerating the translation of nanomaterials in biomedicine. ACS Nano 2015, 9, 6644–6654.
Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005, 307, 538–544.
Gao, J. H.; Gu, H. W.; Xu, B. Multifunctional magnetic nanoparticles: Design, synthesis, and biomedical applications. Acc. Chem. Res. 2009, 42, 1097–1107.
Giljohann, D. A.; Seferos, D. S.; Daniel, W. L.; Massich, M. D.; Patel, P. C.; Mirkin, C. A. Gold nanoparticles for biology and medicine. Angew. Chem., Int. Ed. 2010, 49, 3280–3294.
Assa, F.; Jafarizadeh-Malmiri, H.; Ajamein, H.; Anarjan, N.; Vaghari, H.; Sayyar, Z.; Berenjian, A. A biotechnological perspective on the application of iron oxide nanoparticles. Nano Res. 2016, 9, 2203–2225.
Xie, J.; Liu, G.; Eden, H. S.; Ai, H.; Chen, X. Y. Surface-engineered magnetic nanoparticle platforms for cancer imaging and therapy. Acc. Chem. Res. 2011, 44, 883–892.
Ho, D.; Sun, X. L.; Sun, S. H. Monodisperse magnetic nanoparticles for theranostic applications. Acc. Chem. Res. 2011, 44, 875–882.
Zhang, W. Z.; Liu, L.; Chen, H. M.; Hu, K.; Delahunty, I.; Gao, S.; Xie, J. Surface impact on nanoparticle-based magnetic resonance imaging contrast agents. Theranostics 2018, 8, 2521–2548.
Park, J.; An, K.; Hwang, Y.; Park, J. G.; Noh, H. J.; Kim, J. Y.; Park, J. H.; Hwang, N. M.; Hyeon, T. Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater. 2004, 3, 891–895.
White, M. A.; Johnson, J. A.; Koberstein, J. T.; Turro, N. J. Toward the syntheses of universal ligands for metal oxide surfaces: Controlling surface functionality through click chemistry. J. Am. Chem. Soc. 2006, 128, 11356–11357.
Grancharov, S. G.; Zeng, H.; Sun, S. H.; Wang, S. X.; O'Brien, S.; Murray, C. B.; Kirtley, J. R.; Held, G. A. Bio-functionalization of monodisperse magnetic nanoparticles and their use as biomolecular labels in a magnetic tunnel junction based sensor. J. Phys. Chem. B 2005, 109, 13030–13035.
Hong, R.; Fischer, N. O.; Emrick, T.; Rotello, V. M. Surface PEGylation and ligand exchange chemistry of FePt nanoparticles for biological applications. Chem. Mater. 2005, 17, 4617–4621.
Xu, C. J.; Xu, K. M.; Gu, H. W.; Zheng, R. K.; Liu, H.; Zhang, X. X.; Guo, Z. H.; Xu, B. Dopamine as a robust anchor to immobilize functional molecules on the iron oxide shell of magnetic nanoparticles. J. Am. Chem. Soc. 2004, 126, 9938–9939.
Lattuada, M.; Hatton, T. A. Functionalization of monodisperse magnetic nanoparticles. Langmuir 2007, 23, 2158–2168.
De Palma, R.; Peeters, S.; Van Bael, M. J.; Van Den Rul, H.; Bonroy, K.; Laureyn, W.; Mullens, J.; Borghs, G.; Maes, G. Silane ligand exchange to make hydrophobic superparamagnetic nanoparticles water-dispersible. Chem. Mater. 2007, 19, 1821–1831.
Plueddemann, E. P. Reminiscing on silane coupling agents. J. Adhes. Sci. Technol. 1991, 5, 261–277.
Arkles, B.; Steinmetz, J. R.; Zazyczny, J.; Mehta, P. Factors contributing to the stability of alkoxysilanes in aqueous solution. J. Adhes. Sci. Technol. 1992, 6, 193–206.
Cano, M.; Núñez-Lozano, R.; Lumbreras, R.; González-Rodríguez, V.; Delgado-García, A.; Jiménez-Hoyuela, J. M.; De La Cueva-Méndez, G. Partial PEGylation of superparamagnetic iron oxide nanoparticles thinly coated with amine-silane as a source of ultrastable tunable nanosystems for biomedical applications. Nanoscale 2017, 9, 812–822.
Jana, N. R.; Earhart, C.; Ying, J. Y. Synthesis of water-soluble and functionalized nanoparticles by silica coating. Chem. Mater. 2007, 19, 5074–5082.
Smolensky, E. D.; Park, H. Y. E.; Berquó, T. S.; Pierre, V. C. Surface functionalization of magnetic iron oxide nanoparticles for MRI applications— Effect of anchoring group and ligand exchange protocol. Contrast Media Mol. Imaging 2011, 6, 189–199.
Aebersold, R.; Mann, M. Mass-spectrometric exploration of proteome structure and function. Nature 2016, 537, 347–355.
Cai, W. X.; Tucholski, T. M.; Gregorich, Z. R.; Ge, Y. Top-down proteomics: Technology advancements and applications to heart diseases. Expert Rev. Proteomics 2016, 13, 717–730.
Chen, B. F.; Brown, K. A.; Lin, Z. Q.; Ge, Y. Top-down proteomics: Ready for prime time? Anal. Chem. 2018, 90, 110–127.
Anderson, N. L.; Anderson, N. G. The human plasma proteome. Mol. Cell. Proteomics 2002, 1, 845–867.
Siuti, N.; Kelleher, N. L. Decoding protein modifications using top-down mass spectrometry. Nat. Methods 2007, 4, 817–821.
Brown, K. A.; Chen, B. F.; Guardado-Alvarez, T. M.; Lin, Z. Q.; Hwang, L.; Ayaz-Guner, S.; Jin, S.; Ge, Y. A photocleavable surfactant for top-down proteomics. Nat. Methods, in press, DOI: 10.1038/s41592-019-0391-1.
Xie, S. N.; Moya, C.; Bilgin, B.; Jayaraman, A.; Walton, S. P. Emerging affinity-based techniques in proteomics. Expert Rev. Proteomics 2009, 6, 573–583.
Hunter, T. Signaling—2000 and beyond. Cell 2000, 100, 113–127.
Hwang, L.; Ayaz-Guner, S.; Gregorich, Z. R.; Cai, W. X.; Valeja, S. G.; Jin, S.; Ge, Y. Specific enrichment of phosphoproteins using functionalized multivalent nanoparticles. J. Am. Chem. Soc. 2015, 137, 2432–2435.
Chen, B. F.; Hwang, L.; Ochowicz, W.; Lin, Z. Q.; Guardado-Alvarez, T. M.; Cai, W. X.; Xiu, L. C.; Dani, K.; Colah, C.; Jin, S. et al. Coupling functionalized cobalt ferrite nanoparticle enrichment with online LC/MS/MS for top-down phosphoproteomics. Chem. Sci. 2017, 8, 4306–4311.
Rosi, N. L.; Mirkin, C. A. Nanostructures in biodiagnostics. Chem. Rev. 2005, 105, 1547–1562.
Pan, Y.; Long, M. J. C.; Lin, H. C.; Hedstrom, L.; Xu, B. Magnetic nanoparticles for direct protein sorting inside live cells. Chem. Sci. 2012, 3, 3495–3499.
Aubin-Tam, M. E.; Hamad-Schifferli, K. Structure and function of nanoparticle-protein conjugates. Biomed. Mater. 2008, 3, 034001.
Bagwe, R. P.; Hilliard, L. R.; Tan, W. H. Surface modification of silica nanoparticles to reduce aggregation and nonspecific binding. Langmuir 2006, 22, 4357–4362.
De Palma, R.; Laureyn, W.; Frederix, F.; Bonroy, K.; Pireaux, J. J.; Borghs, G.; Maes, G. Formation of dense self-assembled monolayers of (n-decyl)trichlorosilanes on Ta/Ta2O5. Langmuir 2007, 23, 443–451.
Verma, A.; Stellacci, F. Effect of surface properties on nanoparticle-cell interactions. Small 2010, 6, 12–21.
Scott, A. W.; Garimella, V.; Calabrese, C. M.; Mirkin, C. A. Universal biotin–PEG-linked gold nanoparticle probes for the simultaneous detection of nucleic acids and proteins. Bioconjugate Chem. 2017, 28, 203–211.
Li, Y. F.; Zhang, Y. M.; Wang, W. P. Phototriggered targeting of nanocarriers for drug delivery. Nano Res. 2018, 11, 5424–5438.
Ling, D. S.; Lee, N.; Hyeon, T. Chemical synthesis and assembly of uniformly sized iron oxide nanoparticles for medical applications. Acc. Chem. Res. 2015, 48, 1276–1285.
Na, H. B.; Song, I. C.; Hyeon, T. Inorganic nanoparticles for MRI contrast agents. Adv. Mater. 2009, 21, 2133–2148.
Rejeeth, C.; Pang, X. C.; Zhang, R.; Xu, W.; Sun, X. M.; Liu, B.; Lou, J. T.; Wan, J. J.; Gu, H.; Yan, W. et al. Extraction, detection, and profiling of serum biomarkers using designed Fe3O4@SiO2@HA core–shell particles. Nano Res. 2018, 11, 68–79.
Cano, M.; De La Cueva-Méndez, G. Self-assembly of a superparamagnetic raspberry-like silica/iron oxide nanocomposite using epoxy-amine coupling chemistry. Chem. Commun. 2015, 51, 3620–3622.
Jiang, J. K.; Oberdörster, G.; Biswas, P. Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J. Nanoparticle Res. 2009, 11, 77–89.
Gao, F. P.; Cai, Y. Y.; Zhou, J.; Xie, X. X.; Ouyang, W. W.; Zhang, Y. H.; Wang, X. F.; Zhang, X. D.; Wang, X. W.; Zhao, L. Y. et al. Pullulan acetate coated magnetite nanoparticles for hyper-thermia: Preparation, characterization and in vitro experiments. Nano Res. 2010, 3, 23–31.
Xu, L. J.; Feng, Y.; Fan, Z. K.; Yun, D. C. Research into the grading method of kiwi fruit based on volume estimation and surface defect. INMATEH - Agric. Eng. 2014, 44, 93–102.
Li, Y. C.; Lin, Y. S.; Tsai, P. J.; Chen, C. T.; Chen, W. Y.; Chen, Y. C. Nitrilotriacetic acid-coated magnetic nanoparticles as affinity probes for enrichment of histidine-tagged proteins and phosphorylated peptides. Anal. Chem. 2007, 79, 7519–7525.
Panja, P.; Das, P.; Mandal, K.; Jana, N. R. Hyperbranched polyglycerol grafting on the surface of silica-coated nanoparticles for high colloidal stability and low nonspecific interaction. ACS Sustainable Chem. Eng. 2017, 5, 4879–4889.
Wang, J.; Shen, H. J.; Huang, C.; Ma, Q. Q.; Tan, Y. N.; Jiang, F. L.; Ma, C.; Yuan, Q. Highly efficient and multidimensional extraction of targets from complex matrices using aptamer-driven recognition. Nano Res. 2017, 10, 145–156.
Liu, Z.; Cai, W. B.; He, L. N.; Nakayama, N.; Chen, K.; Sun, X. M.; Chen, X. Y.; Dai, H. J. In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat. Nanotechnol. 2007, 2, 47–52.
Sun, X. M.; Liu, Z.; Welsher, K.; Robinson, J. T.; Goodwin, A.; Zaric, S.; Dai, H. J. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 2008, 1, 203–212.
Wang, C.; Ye, Y. Q.; Hu, Q. Y.; Bellotti, A.; Gu, Z. Tailoring biomaterials for cancer immunotherapy: Emerging trends and future outlook. Adv. Mater. 2017, 29, 1606036.
Greig, F. H.; Nixon, G. F. Phosphoprotein enriched in astrocytes (PEA)-15: A potential therapeutic target in multiple disease states. Pharmacol. Ther. 2014, 143, 265–274.
Lee, J.; Bartholomeusz, C.; Krishnamurthy, S.; Liu, P.; Saso, H.; Lafortune, T. A.; Hortobagyi, G. N.; Ueno, N. T. PEA-15 unphosphorylated at both serine 104 and serine 116 inhibits ovarian cancer cell tumorigenicity and progression through blocking β-catenin. Oncogenesis 2012, 1, e22.
Xie, X. H.; Tang, H. L.; Liu, P.; Kong, Y. N.; Wu, M. Q.; Xiao, X. S.; Yang, L.; Gao, J.; Wei, W.; Lee, J. et al. Development of PEA-15 using a potent non-viral vector for therapeutic application in breast cancer. Cancer Lett. 2015, 356, 374–381.
Cai, W. X.; Guner, H.; Gregorich, Z. R.; Chen, A. J.; Ayaz-Guner, S.; Peng, Y.; Valeja, S. G.; Liu, X. W.; Ge, Y. MASH suite pro: A comprehensive software tool for top-down proteomics. Mol. Cell. Proteomics 2016, 15, 703–714.
Lee, S. H.; Seo, J.; Park, S. Y.; Jeong, M. H.; Choi, H. K.; Lee, C. J.; Kim, M. J.; Guk, G.; Lee, S.; Park, H. et al. Programmed cell death 5 suppresses AKT-mediated cytoprotection of endothelium. Proc. Natl. Acad. Sci. USA 2018, 115, 4672–4677.
Park, S. Y.; Seo, J.; Choi, H. K.; Oh, H. J.; Guk, G.; Lee, Y. H.; Lee, J.; Jun, W. J.; Choi, K. C.; Yoon, H. G. Protein serine/threonine phosphatase PPEF-1 suppresses genotoxic stress response via dephosphorylation of PDCD5. Sci. Rep. 2017, 7, 39222.
Kwak, S.; Lee, S. H.; Han, E. J.; Park, S. Y.; Jeong, M. H.; Seo, J.; Park, S. H.; Sung, G. J.; Yoo, J. Y.; Yoon, H. G. et al. Serine/threonine kinase 31 promotes PDCD5-mediated apoptosis in p53-dependent human colon cancer cells. J. Cell. Physiol. 2019, 234, 2649–2658.
Gregorich, Z. R.; Cai, W. X.; Lin, Z. Q.; Chen, A. J.; Peng, Y.; Kohmoto, T.; Ge, Y. Distinct sequences and post-translational modifications in cardiac atrial and ventricular myosin light chains revealed by top-down mass spectrometry. J. Mol. Cell. Cardiol. 2017, 107, 13–21.
Cai, W. X.; Tucholski, T.; Chen, B. F.; Alpert, A. J.; McIlwain, S.; Kohmoto, T.; Jin, S.; Ge, Y. Top-down proteomics of large proteins up to 223 kDa enabled by serial size exclusion chromatography strategy. Anal. Chem. 2017, 89, 5467–5475.
Kinoshita, E.; Kinoshita-Kikuta, E.; Koike, T. Separation and detection of large phosphoproteins using Phos-tag SDS-PAGE. Nat. Protoc. 2009, 4, 1513–1521.
Schmidt, S. R.; Schweikart, F.; Andersson, M. E. Current methods for phosphoprotein isolation and enrichment. J. Chromatogr. B 2007, 849, 154–162.
Porath, J.; Carlsson, J.; Olsson, I.; Belfrage, G. Metal chelate affinity chromatography, a new approach to protein fractionation. Nature 1975, 258, 598–599.
Kaur-Atwal, G.; Weston, D. J.; Bonner, P. L. R.; Crosland, S.; Green, P. S.; Creaser, C. S. Immobilised metal affinity chromatography for the analysis of proteins and peptides. Curr. Anal. Chem. 2008, 4, 127–135.
Nita-Lazar, A.; Saito-Benz, H.; White, F. M. Quantitative phosphoproteomics by mass spectrometry: Past, present, and future. Proteomics 2008, 8, 4433–4443.
Regnier, F. E.; Kim, J. Proteins and proteoforms: new separation challenges. Anal. Chem. 2018, 90, 361–373.