AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (4.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Assessment of oxide nanoparticle stability in liquid phase transmission electron microscopy

Mark J. MeijerinkKrijn P. de JongJovana Zečević( )
Inorganic Chemistry and CatalysisDebye Institute of Nanomaterials ScienceUtrecht University, Universiteitsweg 99, 3584 CG, UtrechtThe Netherlands
Show Author Information
An erratum to this article is available online at:

Graphical Abstract

Abstract

Studying liquid phase nanoscale dynamic processes of oxide nanoparticles is of considerable interest to a wide variety of fields. Recently developed liquid phase transmission electron microscopy (LP-TEM) is a promising technique, but destabilization of oxides by solid-liquid-electron interactions remains an important challenge. In this work we present a methodology to assess LP-TEM oxide stability in an aqueous phase, by subjecting several oxides of technological importance to a controlled electron dose in water. We show a correlation based on the Gibbs free energy of oxide hydration that can be used to assess the stability of oxides and demonstrate the existence of several remarkably stable oxides, with no observable structural changes after one hour of electron beam irradiation in LP-TEM. Rationalizing such destabilization phenomena combined with the identification of stable oxides allows for designing LP-TEM experiments free from adverse beam effects and thus investigations of numerous relevant nanoscale processes in water.

Electronic Supplementary Material

Video
12274_2019_2419_MOESM1_ESM.avi
12274_2019_2419_MOESM2_ESM.avi
12274_2019_2419_MOESM3_ESM.avi
12274_2019_2419_MOESM4_ESM.mp4
12274_2019_2419_MOESM5_ESM.mp4
12274_2019_2419_MOESM6_ESM.mp4
12274_2019_2419_MOESM7_ESM.mp4
12274_2019_2419_MOESM8_ESM.mp4
Download File(s)
12274_2019_2419_MOESM9_ESM.pdf (4.8 MB)

References

1

Casavola, M.; Hermannsdörfer, J.; de Jonge, N.; Dugulan, A. I.; de Jong, K. P. Fabrication of Fischer-Tropsch catalysts by deposition of iron nanocrystals on carbon nanotubes. Adv. Funct. Mater. 2015, 25, 5309-5319.

2

Prieto, G.; Zečević, J.; Friedrich, H.; de Jong, K. P.; de Jongh, P. E. Towards stable catalysts by controlling collective properties of supported metal nanoparticles. Nat. Mater. 2013, 12, 34-39.

3

Zečević, J.; Vanbutsele, G.; de Jong, K. P.; Martens, J. A. Nanoscale intimacy in bifunctional catalysts for selective conversion of hydrocarbons. Nature 2015, 528, 245-248.

4

Soled, S. Silica-supported catalysts get a new breath of life. Science 2015, 350, 1171-1172.

5

Sanchez, F.; Sobolev, K. Nanotechnology in concrete-A review. Constr. Build. Mater. 2010, 24, 2060-2071.

6

Fortunato, E.; Barquinha, P.; Martins, R. Oxide semiconductor thin-film transistors: A review of recent advances. Adv. Mater. 2012, 24, 2945-2986.

7

Wang, Z. L.; Kong, X. Y.; Ding, Y.; Gao, P.; Hughes, W. L.; Yang, R.; Zhang, Y. Semiconducting and piezoelectric oxide nanostructures induced by polar surfaces. Adv. Funct. Mater. 2004, 14, 943-956.

8

Wang, S. B.; Peng, Y. L. Natural zeolites as effective adsorbents in water and wastewater treatment. Chem. Eng. J. 2010, 156, 11-24.

9

Müller, K. A.; Bednorz, J. G. The discovery of a class of high-temperature superconductors. Science 1987, 237, 1133-1139.

10

Cao, X. Q.; Vassen, R.; Stoever, D. Ceramic materials for thermal barrier coatings. J. Eur. Ceram. Soc. 2004, 24, 1-10.

11

Zhang, Z. B.; Wang, C. C.; Zakaria, R.; Ying, J. Y. Role of particle size in nanocrystalline TiO2-based photocatalysts. J. Phys. Chem. B 1998, 102, 10871-10878.

12

Csicsery, S. M. Shape-selective catalysis in zeolites. Zeolites 1984, 4, 202-213.

13

Haruta, M. Size- and support-dependency in the catalysis of gold. Catal. Today 1997, 36, 153-166.

14

Kruska, K.; Lozano-Perez, S.; Saxey, D. W.; Terachi, T.; Yamada, T.; Smith, G. D. W. Nanoscale characterisation of grain boundary oxidation in cold-worked stainless steels. Corros. Sci. 2012, 63, 225-233.

15

Zeng, R. C.; Zhang, J.; Huang, W. J.; Dietzel, W.; Kainer, K. U.; Blawert, C.; Ke, W. Review of studies on corrosion of magnesium alloys. Trans. Nonferrous Met. Soc. China 2006, 16, s763-s771.

16

Mannhart, J.; Schlom, D. G. Oxide interfaces-An opportunity for electronics. Science 2010, 327, 1607-1611.

17

Williams, D. B.; Carter, C. B. Transmission Electron Microscopy: A Textbook for Materials Science; Springer: London, 2009.

18

Gramm, F.; Baerlocher, C.; McCusker, L. B.; Warrender, S. J.; Wright, P. A.; Han, B. D.; Hong, S. B.; Liu, Z.; Ohsuna, T.; Terasaki, O. Complex zeolite structure solved by combining powder diffraction and electron microscopy. Nature 2006, 444, 79-81.

19

Yuan, C. Z.; Li, J. Y.; Hou, L. R.; Zhang, X. G.; Shen, L. F.; Lou, X. W. Ultrathin mesoporous NiCo2O4 nanosheets supported on Ni foam as advanced electrodes for supercapacitors. Adv. Funct. Mater. 2012, 22, 4592-4597.

20

Saka, H.; Kamino, T.; Ara, S.; Sasaki, K. In situ heating transmission electron microscopy. MRS Bull. 2008, 33, 93-100.

21

Mehraeen, S.; McKeown, J. T.; Deshmukh, P. V.; Evans, J. E.; Abellan, P.; Xu, P. H.; Reed, B. W.; Taheri, M. L.; Fischione, P. E.; Browning, N. D. A (S)TEM gas cell holder with localized laser heating for in situ experiments. Microsc. Microanal. 2013, 19, 470-478.

22

Tao, F.; Crozier, P. A. Atomic-scale observations of catalyst structures under reaction conditions and during catalysis. Chem. Rev. 2016, 116, 3487-3539.

23

Wagner, J. B.; Cavalca, F.; Damsgaard, C. D.; Duchstein, L. D. L.; Hansen, T. W. Exploring the environmental transmission electron microscope. Micron 2012, 43, 1169-1175.

24

van den Berg, R.; Elkjaer, C. F.; Gommes, C. J.; Chorkendorff, I.; Sehested, J.; de Jongh, P. E.; de Jong, K. P.; Helveg, S. Revealing the formation of copper nanoparticles from a homogeneous solid precursor by electron microscopy. J. Am. Chem. Soc. 2016, 138, 3433-3442.

25

Feng, X. F.; Chee, S. W.; Sharma, R.; Liu, K.; Xie, X.; Li, Q. Q.; Fan, S. S.; Jiang, K. L. In situ TEM observation of the gasification and growth of carbon nanotubes using iron catalysts. Nano Res. 2011, 4, 767-779.

26

de Jonge, N.; Ross, F. M. Electron microscopy of specimens in liquid. Nat. Nanotechnol. 2011, 6, 695-704.

27

Chen, X.; Li, C.; Cao, H. L. Recent developments of the in situ wet cell technology for transmission electron microscopies. Nanoscale 2015, 7, 4811-4819.

28

Li, C.; Chen, X.; Liu, H. Y.; Fang, J. L.; Zhou, X. Q. In-situ liquid-cell TEM study of radial flow-guided motion of octahedral Au nanoparticles and nanoparticle clusters. Nano Res. 2018, 11, 4697-4707.

29

Munnik, P.; de Jongh, P. E.; de Jong, K. P. Recent developments in the synthesis of supported catalysts. Chem. Rev. 2015, 115, 6687-6718.

30

Mehrabadi, B. A. T.; Eskandari, S.; Khan, U.; White, R. D.; Regalbuto, J. R. A review of preparation methods for supported metal catalysts. Adv. Catal. 2017, 61, 1-35.

31

Xiong, H. F.; Pham, H. N.; Datye, A. K. Hydrothermally stable heterogeneous catalysts for conversion of biorenewables. Green Chem. 2014, 16, 4627-4643.

32

Ravenelle, R. M.; Copeland, J. R.; Kim, W. G.; Crittenden, J. C.; Sievers, C. Structural changes of γ-Al2O3-supported catalysts in hot liquid water. ACS Catal. 2011, 1, 552-561.

33

Chee, S. W.; Pratt, S. H.; Hattar, K.; Duquette, D.; Ross, F. M.; Hull, R. Studying localized corrosion using liquid cell transmission electron microscopy. Chem. Commun. 2015, 51, 168-171.

34

Gu, M.; Parent, L. R.; Mehdi, B. L.; Unocic, R. R.; McDowell, M. T.; Sacci, R. L.; Xu, W.; Connell, J. G.; Xu, P. H.; Abellan, P. et al. Demonstration of an electrochemical liquid cell for operando transmission electron microscopy observation of the lithiation/delithiation behavior of Si nanowire battery anodes. Nano Lett. 2013, 13, 6106-6112.

35

Williamson, M. J.; Tromp, R. M.; Vereecken, P. M.; Hull, R.; Ross, F. M. Dynamic microscopy of nanoscale cluster growth at the solid-liquid interface. Nat. Mater. 2003, 2, 532-536.

36

Yuk, J. M.; Park, J.; Ercius, P.; Kim, K.; Hellebusch, D. J.; Crommie, M. F.; Lee, J. Y.; Zettl, A.; Alivisatos, A. P. High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science 2012, 336, 61-64.

37

Ye, X. C.; Jones, M. R.; Frechette, L. B.; Chen, Q.; Powers, A. S.; Ercius, P.; Dunn, G.; Rotskoff, G. M.; Nguyen, S. C.; Adiga, V. P. et al. Single-particle mapping of nonequilibrium nanocrystal transformations. Science 2016, 354, 874-877.

38

Dai, L. L.; Sharma, R.; Wu, C. Y. Self-assembled structure of nanoparticles at a liquid-liquid interface. Langmuir 2005, 21, 2641-2643.

39

Hendley IV, C. T.; Tao, J. H.; Kunitake, J. A. M. R.; de Yoreo, J. J.; Estroff, L. A. Microscopy techniques for investigating the control of organic constituents on biomineralization. MRS Bull. 2015, 40, 480-489.

40

Smeets, P. J. M.; Cho, K. R.; Kempen, R. G. E.; Sommerdijk, N. A. J. M.; de Yoreo, J. J. Calcium carbonate nucleation driven by ion binding in a biomimetic matrix revealed by in situ electron microscopy. Nat. Mater. 2015, 14, 394-399.

41

Elgrabli, D.; Dachraoui, W.; Ménard-Moyon, C.; Liu, X. J.; Bégin, D.; Bégin-Colin, S.; Bianco, A.; Gazeau, F.; Alloyeau, D. Carbon nanotube degradation in macrophages: Live nanoscale monitoring and understanding of biological pathway. ACS Nano 2015, 9, 10113-10124.

42

Zheng, H. M.; Claridge, S. A.; Minor, A. M.; Alivisatos, A. P.; Dahmen, U. Nanocrystal diffusion in a liquid thin film observed by in situ transmission electron microscopy. Nano Lett. 2009, 9, 2460-2465.

43

Pohlmann, E. S.; Patel, K.; Guo, S. J.; Dukes, M. J.; Sheng, Z.; Kelly, D. F. Real-time visualization of nanoparticles interacting with glioblastoma stem cells. Nano Lett. 2015, 15, 2329-2335.

44

Radisic, A.; Vereecken, P. M.; Hannon, J. B.; Searson, P. C.; Ross, F. M. Quantifying electrochemical nucleation and growth of nanoscale clusters using real-time kinetic data. Nano Lett. 2006, 6, 238-242.

45

Sacci, R. L.; Dudney, N. J.; More, K. L.; Parent, L. R.; Arslan, I.; Browning, N. D.; Unocic, R. R. Direct visualization of initial SEI morphology and growth kinetics during lithium deposition by in situ electrochemical transmission electron microscopy. Chem. Commun. 2014, 50, 2104-2107.

46

Woehl, T. J.; Abellan, P. Defining the radiation chemistry during liquid cell electron microscopy to enable visualization of nanomaterial growth and degradation dynamics. J. Microsc. 2017, 265, 135-147.

47

Kraus, T.; de Jonge, N. Dendritic gold nanowire growth observed in liquid with transmission electron microscopy. Langmuir 2013, 29, 8427-8432.

48

Jungjohann, K. L.; Bliznakov, S.; Sutter, P. W.; Stach, E. A.; Sutter, E. A. In situ liquid cell electron microscopy of the solution growth of Au-Pd core-shell nanostructures. Nano Lett. 2013, 13, 2964-2970.

49

Abellan, P.; Mehdi, B. L.; Parent, L. R.; Gu, M.; Park, C.; Xu, W.; Zhang, Y. H.; Arslan, I.; Zhang, J. G.; Wang, C. M. et al. Probing the degradation mechanisms in electrolyte solutions for Li-ion batteries by in situ transmission electron microscopy. Nano Lett. 2014, 14, 1293-1299.

50

Park, J.; Park, H.; Ercius, P.; Pegoraro, A. F.; Xu, C.; Kim, J. W.; Han, S. H.; Weitz, D. A. Direct observation of wet biological samples by graphene liquid cell transmission electron microscopy. Nano Lett. 2015, 15, 4737-4744.

51

Nielsen, M. H.; Li, D. S.; Zhang, H. Z.; Aloni, S.; Han, T. Y. J.; Frandsen, C.; Seto, J.; Banfield, J. F.; Cölfen, H.; de Yoreo, J. J. Investigating processes of nanocrystal formation and transformation via liquid cell TEM. Microsc. Microanal. 2014, 20, 425-436.

52

Zečević, J.; Hermannsdörfer, J.; Schuh, T.; de Jong, K. P.; de Jonge, N. Anisotropic shape changes of silica nanoparticles induced in liquid with scanning transmission electron microscopy. Small 2017, 13, 1602466.

53

van de Put, M. W. P.; Carcouët, C. C. M. C.; Bomans, P. H. H.; Friedrich, H.; de Jonge, N.; Sommerdijk, N. A. J. M. Writing silica structures in liquid with scanning transmission electron microscopy. Small 2015, 11, 585-590.

54

Meijerink, M. J.; Spiga, C.; Hansen, T. W.; Damsgaard, C. D.; de Jong, K. P.; Zečević, J. Nanoscale imaging and stabilization of silica nanospheres in liquid phase transmission electron microscopy. Part. Part. Syst. Charact. 2019, 36, 1800374.

55

Lu, Y.; Geng, J. G.; Wang, K.; Zhang, W.; Ding, W. Q.; Zhang, Z. H.; Xie, S. H.; Dai, H. X.; Chen, F. R.; Sui, M. L. Modifying surface chemistry of metal oxides for boosting dissolution kinetics in water by liquid cell electron microscopy. ACS Nano 2017, 11, 8018-8025.

56

Thommes, M.; Kaneko, K.; Neimark, A. V.; Olivier, J. P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K. S. W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051-1069.

57

Hernández Mejía, C.; den Otter, J. H.; Weber, J. L.; de Jong, K. P. Crystalline niobia with tailored porosity as support for cobalt catalysts for the Fischer-Tropsch synthesis. Appl. Catal. A Gen. 2017, 548, 143-149.

58

Ropp, R. C. Encyclopedia of the Alkaline Earth Compounds; Elsevier: Amsterdam, 2013.

59

Koh, A. L.; Gidcumb, E.; Zhou, O.; Sinclair, R. The dissipation of field emitting carbon nanotubes in an oxygen environment as revealed by in situ transmission electron microscopy. Nanoscale 2016, 8, 16405-16415.

60

Schweitzer, G. K.; Pesterfield, L. L. The Aqueous Chemistry of the Elements; Oxford University Press: Oxford, 2010.

61

Schneider, N. M.; Norton, M. M.; Mendel, B. J.; Grogan, J. M.; Ross, F. M.; Bau, H. H. Electron-water interactions and implications for liquid cell electron microscopy. J. Phys. Chem. C 2014, 118, 22373-22382.

62

Robie, R. A.; Hemingway, B. S.; Fisher, J. R. Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 Bar (105 Pascals) Pressure and at Higher Temperatures. United States Department of the Interior, Geological Survey: Washington, DC, 1978.

63

Wesolowski, D. J.; Ziemniak, S. E.; Anovitz, L. M.; Machesky, M. L.; Bénézeth, P.; Palmer, D. A. Solubility and surface adsorption characteristics of metal oxides. In Aqueous Systems at Elevated Temperatures and Pressures. Palmer, D. A.; Fernández-Prini, R.; Harvey, A. H., Eds.; Elsevier: Amsterdam, 2004; pp 493-595.

64

Perry, R. H.; Green, D. W. Perry's Chemical Engineers' Handbook, 8th ed.; McGraw-Hill: New York, 2008.

65

Peiffert, C.; Nguyen-Trung, C.; Palmer, D. A.; Laval, J. P.; Giffaut, E. Solubility of B-Nb2O5 and the hydrolysis of niobium(V) in aqueous solution as a function of temperature and ionic strength. J. Solution Chem. 2010, 39, 197-218.

66

Lencka, M. M.; Anderko, A.; Riman, R. E. Hydrothermal precipitation of lead zirconate titanate solid solutions: Thermodynamic modeling and experimental synthesis. J. Am. Ceram. Soc. 1995, 78, 2609-2618.

67

Söhnel, O.; Garside, J. Precipitation: Basic Principles and Industrial Applications; Butterworth-Heinemann: Boston, 1992.

68

Tanabe, K. Niobic acid as an unusual acidic solid material. Mater. Chem. Phys. 1987, 17, 217-225.

69

Abellan, P.; Woehl, T. J.; Parent, L. R.; Browning, N. D.; Evans, J. E.; Arslan, I. Factors influencing quantitative liquid (scanning) transmission electron microscopy. Chem. Commun. 2014, 50, 4873-4880.

70

Stöber, W.; Fink, A.; Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 1968, 26, 62-69.

71

Wang, C. C.; Ying, J. Y. Sol-gel synthesis and hydrothermal processing of anatase and rutile titania nanocrystals. Chem. Mater. 1999, 11, 3113-3120.

Nano Research
Pages 2355-2363
Cite this article:
Meijerink MJ, de Jong KP, Zečević J. Assessment of oxide nanoparticle stability in liquid phase transmission electron microscopy. Nano Research, 2019, 12(9): 2355-2363. https://doi.org/10.1007/s12274-019-2419-3
Topics:
Part of a topical collection:

940

Views

21

Downloads

7

Crossref

N/A

Web of Science

6

Scopus

1

CSCD

Altmetrics

Received: 28 February 2019
Revised: 12 April 2019
Accepted: 15 April 2019
Published: 22 May 2019
© The Author(s) 2019

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return