AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

van der Waals epitaxial growth of ultrathin metallic NiSe nanosheets on WSe2 as high performance contacts for WSe2 transistors

Bei Zhao1Weiqi Dang1Xiangdong Yang1Jia Li1Haihong Bao3Kai Wang3Jun Luo3Zhengwei Zhang1Bo Li2Haipeng Xie4Yuan Liu2Xidong Duan1 ( )
Hunan Key Laboratory of Two-Dimensional Materials,State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University,Changsha,410082,China;
School of Physics and Electronics,Hunan University,Changsha,410082,China;
Center for Electron Microscopy Institute for New Energy Materials and Low-Carbon Technologies School of Materials,Tianjin University of Technology,Tianjin,300384,China;
Hunan Key Laboratory of Super-microstructure and Ultrafast Process,College of Physics and Electronics, Central South University,Changsha,410083,China;
Show Author Information

Graphical Abstract

Abstract

A prerequisite for widespread applications of atomically thin transition metal dichalcogenides in future electronics is to achieve reliable electrical contacts, which is of considerable challenge due to the difficulties in selectively doping and inevitable physical damages of these atomically thin materials during typical metal integration process. Here, we report the in situ growth of ultrathin metallic NiSe single crystals on WSe2 in which the metallic NiSe nanosheets function as the contact electrodes to WSe2, creating an interface that is essentially free from chemical disorder. The NiSe/WSe2 heterostructures also exhibit well-aligned lattice orientation between the two layers, forming a periodic Moiré pattern. Electrical transport studies demonstrate that the NiSe nanosheets exhibit an excellent metallic feature, as evidenced by the extra-high electrical conductivity of up to 1.6×106 S·m-1. The WSe2 transistors with the NiSe contact show field-effect mobilities (μFE) more than double that with Cr/Au electrodes. This study demonstrates an effective pathway to achieve reliable electrical contacts to the atomically thin 2D materials, and maybe readily extended for fabricating 2D/2D low-resistance contacts for a variety of transition metal dichalcogenides.

Electronic Supplementary Material

Download File(s)
12274_2019_2423_MOESM1_ESM.pdf (2.3 MB)

References

1

Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699-712.

2

Zhang, Z. W.; Chen, P.; Duan, X. D.; Zang, K. T.; Luo, J.; Duan, X. F. Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices. Science 2017, 357, 788-792.

3

Duan, X. D.; Wang, C.; Shaw, J. C.; Cheng, R.; Chen, Y.; Li, H. L.; Wu, X. P.; Tang, Y.; Zhang, Q. L.; Pan, A. L. et al. Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat. Nanotechnol. 2014, 9, 1024-1030.

4

Wang, X. T.; Huang, L.; Peng, Y. T.; Huo, N. J.; Wu, K. D.; Xia, C. X.; Wei, Z. M.; Tongay, S.; Li, J. B. Enhanced rectification, transport property and photocurrent generation of multilayer ReSe2/MoS2 p-n heterojunctions. Nano Res. 2016, 9, 507-516.

5

Zhao, W. J.; Ghorannevis, Z.; Chu, L. Q.; Toh, M.; Kloc, C.; Tan, P. H.; Eda, G. Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. ACS Nano 2013, 7, 791-797.

6

Li, B.; Xing, T.; Zhong, M. Z.; Huang, L.; Lei, N.; Zhang, J.; Li, J. B.; Wei, Z. M. A two-dimensional Fe-doped SnS2 magnetic semiconductor. Nat. Commun. 2017, 8, 1958.

7

Liu, L. N.; Wu, J. X.; Wu, L. Y.; Ye, M.; Liu, X. Z.; Wang, Q.; Hou, S. Y.; Lu, P. F.; Sun, L. F.; Zheng, J. Y. et al. Phase-selective synthesis of 1T' MoS2 monolayers and heterophase bilayers. Nat. Mater. 2018, 17, 1108-1114.

8

Li, H.; Wang, J. H.; Gao, S.; Chen, Q.; Peng, L. M.; Liu, K. H.; Wei, X. L. Superlubricity between MoS2 monolayers. Adv. Mater. 2017, 29, 1701474.

9

Ross, J. S.; Klement, P.; Jones, A. M.; Ghimire, N. J.; Yan, J. Q.; Mandrus, D. G.; Taniguchi, T.; Watanabe, K.; Kitamura, K.; Yao, W. et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions. Nat. Nanotechnol. 2014, 9, 268-272.

10

Liu, X.; Sun, G. Z.; Chen, P.; Liu, J. C.; Zhang, Z. W.; Li, J.; Ma, H. F.; Zhao, B.; Wu, R. X.; Dang, W. Q. et al. High-performance asymmetric electrodes photodiode based on Sb/WSe2 heterostructure. Nano Res. 2019, 12, 339-344.

11

Duan, X. D.; Wang, C.; Pan, A. L.; Yu, R. Q.; Duan, X. F. Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: Opportunities and challenges. Chem. Soc. Rev. 2015, 44, 8859-8876.

12

Ji, Z. H.; Hong, H.; Zhang, J.; Zhang, Q.; Huang, W.; Cao, T.; Qiao, R. X.; Liu, C.; Liang, J.; Jin, C. H. et al. Robust stacking-independent ultrafast charge transfer in MoS2/WS2 bilayers. ACS Nano 2017, 11, 12020-12026.

13

Liu, Y.; Guo, J.; Zhu, E. B.; Liao, L.; Lee, S. J.; Ding, M. N.; Shakir, I.; Gambin, V.; Huang, Y.; Duan, X. F. Approaching the Schottky-Mott limit in van der Waals metal-semiconductor junctions. Nature 2018, 557, 696-700.

14

Zhang, Z. P.; Gong, Y.; Zou, X. L.; Liu, P. R.; Yang, P. F.; Shi, J. P.; Zhao, L. Y.; Zhang, Q.; Gu, L.; Zhang, F. Y. Epitaxial growth of two-dimensional metal-semiconductor transition-metal dichalcogenide vertical stacks (VSe2/MX2) and their band alignments. ACS Nano 2019, 13, 885-893.

15

Bardeen, J. Surface states and rectification at a metal semi-conductor contact. Phys. Rev. 1947, 71, 717-727.

16

Tung, R. T. Chemical bonding and Fermi level pinning at metal-semiconductor interfaces. Phys. Rev. Lett. 2000, 84, 6078-6081.

17

Das, S.; Gulotty, R.; Sumant, A. V.; Roelofs, A. All two-dimensional, flexible, transparent, and thinnest thin film transistor. Nano Lett. 2014, 14, 2861-2866.

18

Chuang, H. J.; Tan, X. B.; Ghimire, N. J.; Perera, M. M.; Chamlagain, B.; Cheng, M. M. C.; Yan, J. Q.; Mandrus, D.; Tománek, D.; Zhou, Z. X. High mobility WSe2 p- and n-type field-effect transistors contacted by highly doped graphene for low-resistance contacts. Nano Lett. 2014, 14, 3594-3601.

19

Safdar, M.; Wang, Q. S.; Mirza, M.; Wang, Z. X.; He, J. Crystal shape engineering of topological crystalline insulator SnTe microcrystals and nanowires with huge thermal activation energy gap. Cryst. Growth Des. 2014, 14, 2502-2509.

20

Li, Z.; Shao, S.; Li, N.; McCall, K.; Wang, J.; Zhang, S. X. Single crystalline nanostructures of topological crystalline insulator SnTe with distinct facets and morphologies. Nano Lett. 2013, 13, 5443-5448.

21

Yao, K. K.; Chen, P.; Zhang, Z. W.; Li, J.; Ai, R. Q.; Ma, H. F.; Zhao, B.; Sun, G. Z.; Wu, R. X.; Tang, X. W. et al. Synthesis of ultrathin two-dimensional nanosheets and van der Waals heterostructures from non-layered γ-CuI. npj 2D Mater. Appl. 2018, 2, 16.

22

Wang, Q. S.; Safdar, M.; Xu, K.; Mirza, M.; Wang, Z. X.; He, J. Van der Waals epitaxy and photoresponse of hexagonal tellurium nanoplates on flexible mica sheets. ACS Nano 2014, 8, 7497-7505.

23

Wang, Q. S.; Wen, Y.; Yao, F. R.; Huang, Y.; Wang, Z. X.; Li, M. L.; Zhan, X. Y.; Xu, K.; Wang, F. M.; Wang, F. et al. BN-enabled epitaxy of Pb1-xSnxSe nanoplates on SiO2/Si for high-performance mid-infrared detection. Small 2015, 11, 5388-5394.

24

Cheng, R. Q.; Wen, Y.; Yin, L.; Wang, F. M.; Wang, F.; Liu, K. L.; Shifa, T. A.; Li, J.; Jiang, C.; Wang, Z. X. et al. Ultrathin single-crystalline CdTe nanosheets realized via van der Waals epitaxy. Adv. Mater. 2017, 29, 1703122.

25

Li, X.; Zhang, L.; Huang, M. R.; Wang, S. Y.; Li, X. M.; Zhu, H. W. Cobalt and nickel selenide nanowalls anchored on graphene as bifunctional electrocatalysts for overall water splitting. J. Mater. Chem. A 2016, 4, 14789-14795.

26

Tang, C.; Pu, Z. H.; Liu, Q.; Asiri, A. M.; Sun, X. P.; Luo, Y. L.; He, Y. Q. In situ growth of nise nanowire film on nickel foam as an electrode for high-performance supercapacitors. ChemElectroChem 2015, 2, 1903-1907.

27

Murali, R.; Yang, Y. X.; Brenner, K.; Beck, T.; Meindl, J. D. Breakdown current density of graphene nanoribbons. Appl. Phys. Lett. 2009, 94, 243114.

28

Kim, D.; Syers, P.; Butch, N. P.; Paglione, J.; Fuhrer, M. S. Coherent topological transport on the surface of Bi2Se3. Nat. Commun. 2013, 4, 2040.

29

Acerce, M.; Voiry, D.; Chhowalla, M. Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat. Nanotechnol. 2015, 10, 313-318.

30

Wu, Z. S.; Ren, W. C.; Gao, L. B.; Zhao, J. P.; Chen, Z. P.; Liu, B. L.; Tang, D. M.; Yu, B.; Jiang, C. B.; Cheng, H. M. Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation. ACS Nano 2009, 3, 411-417.

31

Ji, J. P.; Song, X. F.; Liu, J. Z.; Yan, Z.; Huo, C. X.; Zhang, S. L.; Su, M.; Liao, L.; Wang, W. H.; Ni, Z. H. et al. Two-dimensional antimonene single crystals grown by van der Waals epitaxy. Nat. Commun. 2016, 7, 13352.

32

Ji, Q. Q.; Li, C.; Wang, J. L.; Niu, J. J.; Gong, Y.; Zhang, Z. P.; Fang, Q. Y.; Zhang, Y.; Shi, J. P.; Liao, L. et al. Metallic vanadium disulfide nanosheets as a platform material for multifunctional electrode applications. Nano Lett. 2017, 17, 4908-4916.

33

Zhang, Z. P.; Niu, J. J.; Yang, P. F.; Gong, Y.; Ji, Q. Q.; Shi, J. P.; Fang, Q. Y.; Jiang, S. L.; Li, H.; Zhou, X. B. et al. Van der Waals epitaxial growth of 2D metallic vanadium diselenide single crystals and their extra-high electrical conductivity. Adv. Mater. 2017, 29, 1702359.

34

Ma, H. F.; Chen, P.; Li, B.; Li, J.; Ai, R. Q.; Zhang, Z. W.; Sun, G. Z.; Yao, K. K.; Lin, Z. Y.; Zhao, B. et al. Thickness-tunable synthesis of ultrathin type-Ⅱ dirac semimetal PtTe2 single crystals and their thickness-dependent electronic properties. Nano Lett. 2018, 18, 3523-3529.

35

Zhou, X. L.; Liu, Y.; Ju, H. X.; Pan, B. C.; Zhu, J. F.; Ding, T.; Wang, C. D.; Yang, Q. Design and epitaxial growth of MoSe2-NiSe vertical heteronanostructures with electronic modulation for enhanced hydrogen evolution reaction. Chem. Mater. 2016, 28, 1838-1846.

36

Zheng, W.; Feng, W.; Zhang, X.; Chen, X. S.; Liu, G. B.; Qiu, Y. F.; Hasan, T.; Tan, P. H.; Hu, P. A. Anisotropic growth of nonlayered CdS on MoS2 monolayer for functional vertical heterostructures. Adv. Funct. Mater. 2016, 26, 2648-2654.

37

Zhou, H. L.; Wang, C.; Shaw, J. C.; Cheng, R.; Chen, Y.; Huang, X. Q.; Liu, Y.; Weiss, N. O.; Lin, Z Y.; Huang, Y. et al. Large area growth and electrical properties of p-type WSe2 atomic layers. Nano Lett. 2015, 15, 709-713.

38

Chuang, H. J.; Chamlagain, B.; Koehler, M.; Perera, M. M.; Yan, J. Q.; Mandrus, D.; Tománek, D.; Zhou, Z. X. Low-resistance 2D/2D ohmic contacts: A universal approach to high-performance WSe2, MoS2, and MoSe2 transistors. Nano Lett. 2016, 16, 1896-1902.

39

Wang, T. J.; Andrews, K.; Bowman, A.; Hong, T.; Koehler, M.; Yan, J. Q.; Mandrus, D.; Zhou, Z. X.; Xu, Y. Q. High-performance WSe2 phototransistors with 2D/2D ohmic contacts. Nano Lett. 2018, 18, 2766-2771.

Nano Research
Pages 1683-1689
Cite this article:
Zhao B, Dang W, Yang X, et al. van der Waals epitaxial growth of ultrathin metallic NiSe nanosheets on WSe2 as high performance contacts for WSe2 transistors. Nano Research, 2019, 12(7): 1683-1689. https://doi.org/10.1007/s12274-019-2423-7
Topics:

722

Views

39

Crossref

N/A

Web of Science

39

Scopus

5

CSCD

Altmetrics

Received: 21 February 2019
Revised: 21 April 2019
Accepted: 22 April 2019
Published: 30 May 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return