AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Two-photon AIE probe conjugated theranostic nanoparticles for tumor bioimaging and pH-sensitive drug delivery

Boxuan Ma§Weihua Zhuang§Haiyang HeXin SuTao YuJun HuLi Yang( )Gaocan Li( )Yunbing Wang
National Engineering Research Center for Biomaterials,Sichuan University,Chengdu,610064,China;

§Boxuan Ma and Weihua Zhuang contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Nanoparticles armed with chemotherapy drug and fluorescence probe have become an effective anticancer strategy for their advantages in cancer diagnosis and treatment. However, fluorophore for diagnostic medicine with deep penetration depth and high resolution are still very rare, while rational designs are also required to improve the tumor retention and target-site drug delivery. Herein, a two-photon fluorophore with aggregation-induced emission and large two-photon absorption cross-section has been designed for two-photon bioimaging, and a novel theranostic nanoplatform is also constructed based on doxorubicin and the two-photon fluorophore conjugated copolymer, P(TPMA-co-AEMA)- PEI(DA)-Blink-PEG (PAEEBlink-DA). The micelles maintain a "stealth" property during blood circulation and is activated in the acidic tumor microenvironment, which triggers the charge-conversion and results in enhanced micellar internalization. Meanwhile, PAEMA chains can convert from hydrophobicity to hydrophilicity with accelerated drug release and particle size expansion. The enlarged particle size would potentially extend the retention time of these micelles. Moreover, a great AIE active two-photon bioimaging with tissue penetration depth up to 150 μm is observed and the in vivo biodistribution of nanoparticles can be traced. The in vivo antitumor results further indicate the obvious reduction of adverse effect and enhanced treatment effect of these micelles, proving that these PAEEBlink-DA micelles would be a potential candidate for tumor theranostic applications.

Electronic Supplementary Material

Download File(s)
12274_2019_2426_MOESM1_ESM.pdf (3.2 MB)

References

1

Ni, Y.; Wu, J. S. Far-red and near infrared bodipy dyes: Synthesis and applications for fluorescent pH probes and bio-imaging. Org. Biomol. Chem. 2014, 12, 3774–3791.

2

Keeble, J.; Goh, C. C.; Wang, Y. L.; Weninger, W.; Ng, L. G. Intravital multiphoton imaging of immune cells. In Advances in Bio-Imaging: From Physics to Signal Understanding Issues; Loménie, N.; Racoceanu, D.; Gouaillard, A., Eds.; Springer: Berlin, Heidelberg, 2012; pp 3–16.

3

Hong, Y. N.; Lam, J. W. Y.; Tang, B. Z. Aggregation-induced emission. Chem. Soc. Rev. 2011, 40, 5361–5388.

4

Reisch, A.; Klymchenko, A. S. Fluorescent polymer nanoparticles based on dyes: Seeking brighter tools for bioimaging. Small 2016, 12, 1968–1992.

5

Yuan, Y. Y.; Kwok, R. T. K.; Tang, B. Z.; Liu, B. Targeted theranostic platinum(Ⅳ) prodrug with a built-in aggregation-induced emission light-up apoptosis sensor for noninvasive early evaluation of its therapeutic responses in situ. J. Am. Chem. Soc. 2014, 136, 2546–2554.

6

Luo, J. D.; Xie, Z. L.; Lam, J. W. Y.; Cheng, L.; Chen, H. Y.; Qiu, C. F.; Kwok, H. S.; Zhan, X. W.; Liu, Y. Q.; Zhu, D. B. et al. Aggregation- induced emission of 1-methyl-1, 2, 3, 4, 5-pentaphenylsilole. Chem. Commun. 2001, 1740–1741.

7

Jayaram, D. T.; Ramos-Romero, S.; Shankar, B. H.; Garrido, C.; Rubio, N.; Sanchez-Cid, L.; Gómez, S. B.; Blanco, J.; Ramaiah, D. In vitro and in vivo demonstration of photodynamic activity and cytoplasm imaging through TPE nanoparticles. ACS Chem. Biol. 2016, 11, 104–112.

8

Theer, P.; Hasan, M. T.; Denk, W. Two-photon imaging to a depth of 1, 000 µm in living brains by use of a Ti: Al2O3 regenerative amplifier. Opt. Lett. 2003, 28, 1022–1024.

9

Helmchen, F.; Denk, W. Deep tissue two-photon microscopy. Nat. Methods 2005, 2, 932–940.

10

Jiang, M. J.; Gu, X. G.; Lam, J. W. Y.; Zhang, Y. L.; Kwok, R. T. K.; Wong, K. S.; Tang, B. Z. Two-photon AIE bio-probe with large stokes shift for specific imaging of lipid droplets. Chem. Sci. 2017, 8, 5440–5446.

11

Roberts, W. G.; Palade, G. E. Increased microvascular permeability and endothelial fenestration induced by vascular endothelial growth factor. J. Cell Sci. 1995, 108, 2369–2379.

12

Luo, Y. P.; Jiang, F.; Cole, T. B.; Hradil, V. P.; Reuter, D.; Chakravartty, A.; Albert, D. H.; Davidsen, S. K.; Cox, B. F.; McKeegan, E. M. et al. A novel multi-targeted tyrosine kinase inhibitor, linifanib (ABT-869), produces functional and structural changes in tumor vasculature in an orthotopic rat glioma model. Cancer Chemother. Pharmacol. 2012, 69, 911–921.

13

Larson, D. R.; Zipfel, W. R.; Williams, R. M.; Clark, S. W.; Bruchez, M. P.; Wise, F. W.; Webb, W. W. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 2003, 300, 1434–1436.

14

Wang, D.; Su, H. F.; Kwok, R. T. K.; Hu, X. L.; Zou, H.; Luo, Q. X.; Lee, M. M. S.; Xu, W. H.; Lam, J. W. Y.; Tang, B. Z. Rational design of a water-soluble NIR AIEgen, and its application in ultrafast wash-free cellular imaging and photodynamic cancer cell ablation. Chem. Sci. 2018, 9, 3685–3693.

15

Ge, Z. S.; Liu, S. Y. Functional block copolymer assemblies responsive to tumor and intracellular microenvironments for site-specific drug delivery and enhanced imaging performance. Chem. Soc. Rev. 2013, 42, 7289–7325.

16

Miyata, K.; Christie, R. J.; Kataoka, K. Polymeric micelles for nano-scale drug delivery. React. Funct. Polym. 2011, 71, 227–234.

17

Zhao, J. Y.; Zhong, D.; Zhou, S. B. NIR-Ⅰ-to-NIR-Ⅱ fluorescent nanomaterials for biomedical imaging and cancer therapy. J. Mater. Chem. B 2018, 6, 349–365.

18

Wang, Y.; Wei, G. Q.; Zhang, X. B.; Huang, X. H.; Zhao J. Y.; Guo, X.; Zhou, S. B. Multistage targeting strategy using magnetic composite nanoparticles for synergism of photothermal therapy and chemotherapy. Small 2014, 14, 1702994.

19

Fang, J.; Nakamura, H.; Maeda, H. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv. Drug Deliv. Rev. 2011, 63, 136–151.

20

Sun, Q. H.; Zhou, Z. X.; Qiu, N. S.; Shen, Y. Q. Rational design of cancer nanomedicine: Nanoproperty integration and synchronization. Adv. Mater. 2017, 29, 1606628.

21

Stewart, M. P.; Sharei, A.; Ding, X. Y.; Sahay, G.; Langer, R.; Jensen, K. F. In vitro and ex vivo strategies for intracellular delivery. Nature 2016, 538, 183–192.

22

Sanhai, W. R.; Sakamoto, J. H.; Canady, R.; Ferrari, M. Seven challenges for nanomedicine. Nat. Nanotechnol. 2008, 3, 242–244.

23

Shi, J. J.; Kantoff, P. W.; Wooster, R.; Farokhzad, O. C. Cancer nanomedicine: Progress, challenges and opportunities. Nat. Rev. Cancer 2016, 17, 20–37.

24

Chen, G. Y.; Roy, I.; Yang, C. H.; Prasad, P. N. Nanochemistry and nanomedicine for nanoparticle-based diagnostics and therapy. Chem. Rev. 2016, 116, 2826–2885.

25

Peer, D.; Karp, J. M.; Hong, S.; Farokhzad, O. C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2007, 2, 751–760.

26

Sugihara, S.; Blanazs, A.; Armes, S. P.; Ryan, A. J.; Lewis, A. L. Aqueous dispersion polymerization: A new paradigm for in situ block copolymer self-assembly in concentrated solution. J. Am. Chem. Soc. 2011, 133, 15707–15713.

27

Wang, S.; Huang, P.; Chen, X. Y. Hierarchical targeting strategy for enhanced tumor tissue accumulation/retention and cellular internalization. Adv. Mater. 2016, 28, 7340–7364.

28

Zhang, Y.; Cai, K. M.; Li, C.; Guo, Q.; Chen, Q. J.; He, X.; Liu, L. S.; Zhang, Y. J.; Lu, Y. F.; Chen, X. L. et al. Macrophage-membrane-coated nanoparticles for tumor-targeted chemotherapy. Nano Lett. 2018, 18, 1908–1915.

29

Guo, X.; Wei, X.; Jing, Y. T.; Zhou, S. B. Size changeable nanocarriers with nuclear targeting for effectively overcoming multidrug resistance in cancer therapy. Adv. Mater. 2015, 27, 6450–6456.

30

Guo, X.; Shi, C. L.; Yang, G.; Wang, J.; Cai, Z. H.; Zhou, S. B. Dual-responsive polymer micelles for target-cell-specific anticancer drug delivery. Chem. Mater. 2014, 26, 4405–4418.

31

Huang, Y.; Tang, Z. H.; Zhang, X. F.; Yu, H. Y.; Sun, H.; Pang, X.; Chen, X. S. pH-triggered charge-reversal polypeptide nanoparticles for cisplatin delivery: Preparation and in vitro evaluation. Biomacromolecules 2013, 14, 2023–2032.

32

Liu, G. Y.; Li, M.; Zhu, C. S.; Jin, Q.; Zhang, Z. C.; Ji, J. Charge-conversional and pH-sensitive PEGylated polymeric micelles as efficient nanocarriers for drug delivery. Macromol. Biosci. 2014, 14, 1280–1290.

33

Xu, P. S.; Van Kirk, E. A.; Zhan, Y. H.; Murdoch, W. J.; Radosz, M.; Shen, Y. Q. Targeted charge-reversal nanoparticles for nuclear drug delivery. Angew. Chem. 2007, 119, 5087–5090.

34

Lee, E. S.; Gao, Z. G.; Bae, Y. H. Recent progress in tumor pH targeting nanotechnology. J. Control. Release. 2008, 132, 164–170.

35

Lu, Y.; Aimetti, A. A.; Langer, R.; Gu, Z. Bioresponsive materials. Nat. Rev. Mater. 2016, 2, 16075.

36

Hu, J. M.; Zhang, G. Y.; Ge, Z. S.; Liu, S. Y. Stimuli-responsive tertiary amine methacrylate-based block copolymers: Synthesis, supramolecular self-assembly and functional applications. Prog. Polym. Sci. 2014, 39, 1096–1143.

37

Lee, E. S.; Na, K.; Bae, Y. H. Super pH-sensitive multifunctional polymeric micelle. Nano Lett. 2005, 5, 325–329.

38

Mindell, J. A. Lysosomal acidification mechanisms. Annu. Rev. Physiol. 2012, 74, 69–86.

39

Gu, J. X.; Cheng, W. P.; Liu, J. G.; Lo, S. Y.; Smith, D.; Qu, X. Z.; Yang, Z. Z. pH-triggered reversible "stealth" polycationic micelles. Biomacromolecules 2008, 9, 255–262.

40

Yoshio, O.; Reiko, A.; Toyoki, K. Reaction of the azomethine moiety buried in bilayer membranes. Bull. Chem. Soc. Jpn. 1983, 56, 802–808.

41

Ma, B. X.; Zhuang, W. H.; Wang, Y. N.; Luo, R. F.; Wang, Y. B. pH-sensitive doxorubicin-conjugated prodrug micelles with charge-conversion for cancer therapy. Acta Biomater. 2018, 70, 186–196.

42

Zhou, K. J.; Wang, Y. G.; Huang, X. N.; Luby-Phelps, K.; Sumer, B. D.; Gao, J. M. Tunable, ultrasensitive pH-responsive nanoparticles targeting specific endocytic organelles in living cells. Angew. Chem. , Int. Ed. 2011, 50, 6109–6114.

43

Zhuang, W. H.; Xu, Y. Y.; Li, G. C.; Hu, J.; Ma, B. X.; Yu, T.; Su, X.; Wang, Y. B. Redox and pH dual-responsive polymeric micelles with aggregation-induced emission feature for cellular imaging and chemotherapy. ACS Appl. Mater. Interfaces 2018, 10, 18489–18498.

44

Hu, J.; Zhuang, W. H.; Ma, B. X.; Su, X.; Yu, T.; Li, G. C.; Hu, Y. F.; Wang, Y. B. Redox-responsive biomimetic polymeric micelle for simultaneous anticancer drug delivery and aggregation-induced emission active imaging. Bioconjugate Chem. 2018, 29, 1897–1910.

Nano Research
Pages 1703-1712
Cite this article:
Ma B, Zhuang W, He H, et al. Two-photon AIE probe conjugated theranostic nanoparticles for tumor bioimaging and pH-sensitive drug delivery. Nano Research, 2019, 12(7): 1703-1712. https://doi.org/10.1007/s12274-019-2426-4
Topics:

893

Views

25

Crossref

N/A

Web of Science

28

Scopus

3

CSCD

Altmetrics

Received: 21 February 2019
Revised: 23 April 2019
Accepted: 26 April 2019
Published: 09 May 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return