Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Luminescent single-molecule magnet of metallofullerene DyErScN@h-C80

Mingzhe Nie1,5Jin Xiong2Chong Zhao1,5Haibing Meng1,5Kun Zhang4Yibo Han4Jie Li1Bingwu Wang2()Lai Feng3()Chunru Wang1()Taishan Wang1()
Beijing National Laboratory for Molecular Sciences,Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences,Beijing,100190,China;
Beijing National Laboratory of Molecular Science,College of Chemistry and Molecular Engineering, State Key Laboratory of Rare Earth Materials Chemistry and Applications, Peking University,Beijing,100871,China;
Soochow Institute for Energy and Materials InnovationS(SIEMIS),College of Physics, Optoelectronics and Energy & Jiangsu Key Laboratory of Advanced; Carbon Materials and Wearable Energy Technologies, Soochow University,Suzhou,215006,China;
Wuhan National High Magnetic Field Center and School of Physics,Huazhong University of Science and Technology,Wuhan,430074,China;
University of Chinese Academy of Sciences,Beijing,100049,China;
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

Magneto-luminescent molecules have significant applications in data storage and quantum computing. However, design of these bi-functional molecules coupled with magnetic behavior and photoluminescence is still challenging. In this work, we report a metallofullerene DyErScN@h-C80 exhibiting single-molecule magnet (SMM) behavior and near-infrared emission. For DyErScN@h-C80, two functional lanthanide metal ions of Dy3+ (SMM function) and Er3+ (luminescent function) are integrated inside a fullerene cage using a trimetallic nitride template, and its structure has been unambiguously characterized by single-crystal X-ray diffraction. Magnetic measurements revealed that DyErScN@h-C80 behaves as a SMM with a blocking temperature up to 9 K resulting from the intramolecular magnetic interaction between Dy3+ and Er3+ ions. Moreover, DyErScN@h-C80 exhibits temperature-dependent near-infrared emission around 1.5 µm with multiple splitting peaks from Er3+, which arises from the influence of Dy3+ ion. This study provides a new strategy to synthesize new magneto-luminescent molecule materials.

Electronic Supplementary Material

Download File(s)
12274_2019_2429_MOESM1_ESM.cif (1.8 MB)
12274_2019_2429_MOESM2_ESM.pdf (4.5 MB)

References

1

Ardavan, A.; Rival, O.; Morton, J. J. L.; Blundell, S. J.; Tyryshkin, A. M.; Timco, G. A.; Winpenny, R. E. P. Will spin-relaxation times in molecular magnets permit quantum information processing? Phys. Rev. Lett. 2007, 98, 057201.

2

Bogani, L.; Wernsdorfer, W. Molecular spintronics using single-molecule magnets. Nat. Mater. 2008, 7, 179-186.

3

Aromí, G.; Aguilà, D.; Gamez, P.; Luis, F.; Roubeau, O. Design of magnetic coordination complexes for quantum computing. Chem. Soc. Rev. 2012, 41, 537-546.

4

Liu, Y. X.; Wang, D. S.; Shi, J. X.; Peng, Q.; Li, Y. D. Magnetic tuning of upconversion luminescence in lanthanide-doped bifunctional nanocrystals. Angew. Chem., Int. Ed. 2013, 52, 4366-4369.

5

Zhou, N.; Xu, B.; Gan, L.; Zhang, J. P.; Han, J. B.; Zhai, T. Y. Narrowband spectrally selective near-infrared photodetector based on up-conversion nanoparticles used in a 2D hybrid device. J. Mater. Chem. C 2017, 5, 1591-1595.

6

Bazalova, O.; Kvicalova, M.; Valkova, T.; Slaby, P.; Bartos, P.; Netusil, R.; Tomanova, K.; Braeunig, P.; Lee, H. J.; Sauman, I. et al. Cryptochrome 2 mediates directional magnetoreception in cockroaches. Proc. Natl. Acad. Sci. USA 2016, 113, 1660-1665.

7

Maeda, K.; Henbest, K. B.; Cintolesi, F.; Kuprov, I.; Rodgers, C. T.; Liddell, P. A.; Gust, D.; Timmel, C. R.; Hore, P. J. Chemical compass model of avian magnetoreception. Nature 2008, 453, 387-390.

8

Long, J.; Guari, Y.; Ferreira, R. A. S.; Carlos, L. D.; Larionova, J. Recent advances in luminescent lanthanide based single-molecule magnets. Coord. Chem. Rev. 2018, 363, 57-70.

9

Bi, Y.; Chen, C.; Zhao, Y. F.; Zhang, Y. Q.; Jiang, S. D.; Wang, B. W.; Han, J. B.; Sun, J. L.; Bian, Z. Q.; Wang, Z. M. et al. Thermostability and photoluminescence of dy(Ⅲ) single-molecule magnets under a magnetic field. Chem. Sci. 2016, 7, 5020-5031.

10

Jia, J. H.; Li, Q. W.; Chen, Y. C.; Liu, J. L.; Tong, M. L. Luminescent single-molecule magnets based on lanthanides: Design strategies, recent advances and magneto-luminescent studies. Coord. Chem. Rev. 2019, 378, 365-381.

11

Wang, Z. Y.; Izumi, N.; Nakanishi, Y.; Koyama, T.; Sugai, T.; Tange, M.; Okazaki, T.; Shinohara, H. Near-infrared photoluminescence properties of endohedral mono- and dithulium metallofullerenes. ACS Nano 2016, 10, 4282-4287.

12

Kodama, T.; Ohnishi, M.; Park, W.; Shiga, T.; Park, J.; Shimada, T.; Shinohara, H.; Shiomi, J.; Goodson, K. E. Modulation of thermal and thermoelectric transport in individual carbon nanotubes by fullerene encapsulation. Nat. Mater. 2017, 16, 892-897.

13

Liu, F. P.; Krylov, D. S.; Spree, L.; Avdoshenko, S. M.; Samoylova, N. A.; Rosenkranz, M.; Kostanyan, A.; Greber, T.; Wolter, A. U. B.; Büchner, B. et al. Single molecule magnet with an unpaired electron trapped between two lanthanide ions inside a fullerene. Nat. Commun. 2017, 8, 16098.

14

Westerström, R.; Dreiser, J.; Piamonteze, C.; Muntwiler, M.; Weyeneth, S.; Brune, H.; Rusponi, S.; Nolting, F.; Popov, A.; Yang, S. F. et al. An endohedral single-molecule magnet with long relaxation times: DySc2N@C80. J. Am. Chem. Soc. 2012, 134, 9840-9843.

15

Krylov, D. S.; Liu, F.; Avdoshenko, S. M.; Spree, L.; Weise, B.; Waske, A.; Wolter, A. U. B.; Büchner, B.; Popov, A. A. Record-high thermal barrier of the relaxation of magnetization in the nitride clusterfullerene Dy2ScN@C80-h. Chem. Commun. 2017, 53, 7901-7904.

16

Rincón-García, L.; Ismael, A. K.; Evangeli, C.; Grace, I.; Rubio-Bollinger, G.; Porfyrakis, K.; Agraït, N.; Lambert, C. J. Molecular design and control of fullerene-based bi-thermoelectric materials. Nat. Mater. 2016, 15, 289-293.

17

Wu, B.; Wang, T. S.; Feng, Y. Q.; Zhang, Z. X.; Jiang, L.; Wang, C. R. Molecular magnetic switch for a metallofullerene. Nat. Commun. 2015, 6, 6468.

18

Ito, Y.; Okazaki, T.; Okubo, S.; Akachi, M.; Ohno, Y.; Mizutani, T.; Nakamura, T.; Kitaura, R.; Sugai, T.; Shinohara, H. Enhanced 1520 nm photoluminescence from Er3+ ions in di-erbium-carbide metallofullerenes (Er2C2)@C82 (isomers Ⅰ, Ⅱ, and Ⅲ). ACS Nano 2007, 1, 456-462.

19

Macfarlane, R. M.; Bethune, D. S.; Stevenson, S.; Dorn, H. C. Fluorescence spectroscopy and emission lifetimes of Er3+ in ErxSc3−xN@C80 (x = 1-3). Chem. Phys. Lett. 2001, 343, 229-234.

20

Olmstead, M. M.; de Bettencourt-Dias, A.; Duchamp, J. C.; Stevenson, S.; Dorn, H. C.; Balch, A. L. Isolation and crystallographic characterization of ErSc2N@C80:  An endohedral fullerene which crystallizes with remarkable internal order. J. Am. Chem. Soc. 2000, 122, 12220-12226.

21

Westerström, R.; Dreiser, J.; Piamonteze, C.; Muntwiler, M.; Weyeneth, S.; Krämer, K.; Liu, S. X.; Decurtins, S.; Popov, A.; Yang, S. F. et al. Tunneling, remanence, and frustration in dysprosium-based endohedral single-molecule magnets. Phys. Rev. B 2014, 89, 060406.

22

Dreiser, J.; Westerström, R.; Zhang, Y.; Popov, A. A.; Dunsch, L.; Krämer, K.; Liu, S. X.; Decurtins, S.; Greber, T. The metallofullerene field-induced single-ion magnet HoSc2N@C80. Chem. -〞Eur. J. 2014, 20, 13536-13540.

23

Chen, Y. C.; Liu, J. L.; Ungur, L.; Liu, J.; Li, Q. W.; Wang, L. F.; Ni, Z. P.; Chibotaru, L. F.; Chen, X. M.; Tong, M. L. Symmetry-supported magnetic blocking at 20 K in pentagonal bipyramidal Dy(Ⅲ) single-ion magnets. J. Am. Chem. Soc. 2016, 138, 2829-2837.

24

Aquilante, F.; Autschbach, J.; Carlson, R. K.; Chibotaru, L. F.; Delcey, M. G.; De Vico, L.; Fdez. Galván, I.; Ferré, N.; Frutos, L. M.; Gagliardi, L. et al. MOLCAS 8: New capabilities for multiconfigurational quantum chemical calculations across the periodic table. J. Comput. Chem. 2016, 37, 506-541.

25

Lines, M. E. Orbital angular momentum in the theory of paramagnetic clusters. J. Chem. Phys. 1971, 55, 2977-2984.

26

Ungur, L.; van den Heuvel, W.; Chibotaru, L. F. Ab initio investigation of the non-collinear magnetic structure and the lowest magnetic excitations in dysprosium triangles. New J. Chem. 2009, 33, 1224-1230.

27

Chibotaru, L. F.; Ungur, L.; Soncini, A. The origin of nonmagnetic kramers doublets in the ground state of dysprosium triangles: Evidence for a toroidal magnetic moment. Angew. Chem., Int. Ed. 2008, 47, 4126-4129.

28

Chibotaru, L. F.; Ungur, L.; Aronica, C.; Elmoll, H.; Pilet, G.; Luneau, D. Structure, magnetism, and theoretical study of a mixed-valence Co3Co4 heptanuclear wheel: Lack of SMM behavior despite negative magnetic anisotropy. J. Am. Chem. Soc. 2008, 130, 12445-12455.

29

Dantelle, G.; Tiwari, A.; Rahman, R.; Plant, S. R.; Porfyrakis, K.; Mortier, M.; Taylor, R. A.; Briggs, G. A. D. Optical properties of Er3+ in fullerenes and in β-PbF2 single-crystals. Opt. Mater. 2009, 32, 251-256.

30

Wybourne, B. G. Spectroscopic Properties of Rare Earths; Interscience Publishers: New York, 1965.

31

Wybourne, B. G.; Smentek, L. Optical Spectroscopy of Lanthanides: Magnetic and Hyperfine Interactions; CRC Press: Boca Raton, 2007.

32

Jones, M. A. G.; Morton, J. J. L.; Taylor, R. A.; Ardavan, A.; Briggs, G. A. D. PL, magneto-PL and PLE of the trimetallic nitride template fullerene Er3N@C80. Phys. Status Solidi B 2006, 243, 3037-3041.

33

Tiwari, A.; Dantelle, G.; Porfyrakis, K.; Ardavan, A.; Briggs, G. A. D. Temperature-dependent photoluminescence study of ErSc2N@C80 and Er2ScN@C80 fullerenes. Phys. Status Solidi B 2008, 245, 1998-2001.

34

Jones, M. A. G.; Taylor, R. A.; Ardavan, A.; Porfyrakis, K.; Briggs, G. A. D. Direct optical excitation of a fullerene-incarcerated metal ion. Chem. Phys. Lett. 2006, 428, 303-306.

Nano Research
Pages 1727-1731
Cite this article:
Nie M, Xiong J, Zhao C, et al. Luminescent single-molecule magnet of metallofullerene DyErScN@h-C80. Nano Research, 2019, 12(7): 1727-1731. https://doi.org/10.1007/s12274-019-2429-1
Topics:
Metrics & Citations  
Article History
Copyright
Return