AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Heterostructures in two-dimensional colloidal metal chalcogenides: Synthetic fundamentals and applications

Yuho Min1,§Eunmi Im3,§Geon-Tae Hwang1Jong-Woo Kim1Cheol-Woo Ahn1Jong-Jin Choi1Byung-Dong Hahn1Joon-Hwan Choi1Woon-Ha Yoon1Dong-Soo Park1Dong Choon Hyun2Geon Dae Moon3( )
Functional Ceramics Department, Powder & Ceramics Division,Korea Institute of Materials Science (KIMS),Changwon, Gyeongnam,51508,Republic of Korea;
,Kyungpook National University,Daegu,41566,Republic of Korea;
Dongnam Regional Division,Korea Institute of Industrial Technology,Busan,46938,Republic of Korea;

§ Yuho Min and Eunmi Im contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

As a new class of two-dimensional materials, two-dimensional (2D) heterostructures constructed from metal chalcogenides (MCs) have been gaining tremendous attention due to their unprecedented physical and chemical phenomena, mainly originated from their distinct structural features such as composition, architecture type, spatial arrangement of each component, crystal structure, exposed facet and interface, dimensionality in their heterostructures. Towards the realization of practical applications, synthetic approaches need a rational design with a variety of architecture types including laterally-combined, vertically-aligned, and conformally-coated 2D MC heterostructures. Among various synthetic routes, solution-based synthesis is thought of as an alternative to fabrication through high-cost setups since it can control those structural features in a cheap fashion. This review presents recent progress on solution-based synthesis to produce various 2D MC heterostructures with a focus on the synthetic fundamentals in terms of thermodynamic and kinetic aspects related to the growth mechanism. Four different synthetic approaches are reviewed: seeded growth, cation exchange reaction, colloidal atomic layer deposition, direct synthesis including one-step process and modified electrochemical method. We also provide some representative applications of 2D MC heterostructures and their hybrid composites in various fields including optoelectronics, thermoelectrics, catalysis, and battery. Finally, we offer an insight into challenges and future directions in a synthetic improvement of 2D MC heterostructures.

References

1

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

2

Coleman, J. N.; Lotya, M.; O'Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J. et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 2011, 331, 568–571.

3

Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–721.

4

Xu, M. S.; Liang, T.; Shi, M. M.; Chen, H. Z. Graphene-like two-dimensional materials. Chem. Rev. 2013, 113, 3766–3798.

5

Zhang, X. D.; Xie, Y. Recent advances in free-standing two-dimensional crystals with atomic thickness: Design, assembly and transfer strategies. Chem. Soc. Rev. 2013, 42, 8187–8199.

6

Tan, C. L.; Zhang, H. Wet-chemical synthesis and applications of non-layer structured two-dimensional nanomaterials. Nat. Commun. 2015, 6, 7873.

7

Fan, Z. X.; Huang, X.; Tan, C. L.; Zhang, H. Thin metal nanostructures: Synthesis, properties and applications. Chem. Sci. 2015, 6, 95–111.

8

Lhuillier, E.; Pedetti, S.; Ithurria, S.; Nadal, B.; Heuclin, H.; Dubertret, B. Two-dimensional colloidal metal chalcogenides semiconductors: Synthesis, spectroscopy, and applications. Acc. Chem. Res. 2015, 48, 22–30.

9

Tan, C. L.; Cao, X. H.; Wu, X. J.; He, Q. Y.; Yang, J.; Zhang, X.; Chen, J. Z.; Zhao, W.; Han, S. K.; Nam, G. H. et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 2017, 117, 6225–6331.

10

Tan, C. L.; Zhang, H. Two-dimensional transition metal dichalcogenide nanosheet-based composites. Chem. Soc. Rev. 2015, 44, 2713–2731.

11

Tan, C. L.; Chen, J. Z.; Wu, X. J.; Zhang, H. Epitaxial growth of hybrid nanostructures. Nat. Rev. Mater. 2018, 3, 17089.

12

Fu, L.; Sun, Y. Y.; Wu, N.; Mendes, R. G.; Chen, L. F.; Xu, Z.; Zhang, T.; Rümmeli, M. H.; Rellinghaus, B.; Pohl, D. et al. Direct growth of MoS2/h-BN heterostructures via a sulfide-resistant alloy. ACS Nano 2016, 10, 2063–2070.

13

Liu, Y.; Weiss, N. O.; Duan, X. D.; Cheng, H. C.; Huang, Y.; Duan, X. F. Van der Waals heterostructures and devices. Nat. Rev. Mater. 2016, 1, 16042.

14

Gong, Y. J.; Lin, J. H.; Wang, X. L.; Shi, G.; Lei, S. D.; Lin, Z.; Zou, X. L.; Ye, G. L.; Vajtai, R.; Yakobson, B. I. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 2014, 13, 1135–1142.

15

Chen, X. L.; Wu, Y. Y.; Wu, Z. F.; Han, Y.; Xu, S. G.; Wang, L.; Ye, W. G.; Han, T. Y.; He, Y. H.; Cai. Y. et al. High-quality sandwiched black phosphorus heterostructure and its quantum oscillations. Nat. Commun. 2015, 6, 7315.

16

Novoselov, K. S.; Mishchenko, A.; Carvalho, A.; Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 2016, 353, aac9439.

17

Naylor, C. H.; Parkin, W. M.; Gao, Z. L.; Berry, J.; Zhou, S. S.; Zhang, Q. C.; McClimon, J. B.; Tan, L. Z.; Kehayias, C. E.; Zhao, M. Q. et al. Synthesis and physical properties of phase-engineered transition metal dichalcogenide monolayer heterostructures. ACS Nano 2017, 11, 8619–8627.

18

Poh, S. M.; Zhao, X. X.; Tan, S. J. R.; Fu, D. Y.; Fei, W. W.; Chu, L. Q.; Dan, J. D.; Zhou, W.; Pennycook, S. J.; Castro Neto, A. H. et al. Molecular beam epitaxy of highly crystalline MoSe2 on hexagonal boron nitride. ACS Nano 2018, 12, 7562–7570.

19

Dean, C. R.; Young, A. F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard K. L. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 2010, 5, 722–726.

20

Tan, C. L.; Zeng, Z. Y.; Huang, X.; Rui, X. H.; Wu, X. J.; Li, B.; Luo, Z. M.; Chen, J. Z.; Chen, B.; Yan, Q. Y. et al. Liquid-phase epitaxial growth of two-dimensional semiconductor hetero-nanostructures. Angew. Chem., Int. Ed. 2015, 54, 1841–1845.

21

Min, Y.; Park, G.; Kim, B.; Giri, A.; Zeng, J.; Roh, J. W.; Kim, S. I.; Lee, K. H.; Jeong, U. Synthesis of multishell nanoplates by consecutive epitaxial growth of Bi2Se3 and Bi2Te3 nanoplates and enhanced thermoelectric properties. ACS Nano 2015, 9, 6843–6853.

22

Zhang, T.; Fu, L. Controllable chemical vapor deposition growth of two-dimensional heterostructures. Chem 2018, 4, 671–689.

23

Withers, F.; Yang, H.; Britnell, L.; Rooney, A. P.; Lewis, E.; Felten, A.; Woods, C. R.; Sanchez Romaguera, V.; Georgiou, T.; Eckmann, A. et al. Heterostructures produced from nanosheet-based inks. Nano Lett. 2014, 14, 3987–3992.

24

Hu, G. H.; Albrow-Owen, T.; Jin, X. X.; Ali, A.; Hu, Y. W.; Howe, R. C. T.; Shehzad, K.; Yang, Z. Y.; Zhu, X. K.; Woodward, R. I. et al. Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics. Nat. Commun. 2018, 8, 278.

25

Jo, S.; Choo, S.; Kim, F.; Heo, S. H.; Son, J. S. Ink processing for thermoelectric materials and power-generating devices. Adv. Mater. 2018, 28, e1804930.

26

Fan, Z. X.; Huang, X.; Han, Y.; Bosman, M.; Wang, Q. X.; Zhu, Y. H.; Liu, Q.; Li, B.; Zeng, Z. Y.; Wu, J. et al. Surface modification-induced phase transformation of hexagonal close-packed gold square sheets. Nat. Commun. 2015, 6, 6571.

27

Yan, Y. C.; Shan, H.; Li, G.; Xiao, F.; Jiang, Y. Y.; Yan, Y. Y.; Jin, C. H.; Zhang, H.; Wu, J. B.; Yang, D. R. Epitaxial growth of multimetallic Pd@PtM (M = Ni, Rh, Ru) core-shell nanoplates realized by in situ-produced CO from interfacial catalytic reactions. Nano Lett. 2016, 16, 7999–8004.

28

Azadmanjiri, J.; Srivastava, V. K.; Kumar, P.; Wang, J.; Yu, A. M. Graphene-supported 2D transition metal oxide heterostructures. J. Mater. Chem. A 2018, 6, 13509–13537.

29

Wang, J. G.; Ma, F. C.; Sun, M. T. Graphene, hexagonal boron nitride, and their heterostructures: Properties and applications. RSC Adv. 2017, 7, 16801–16822.

30

Solís-Fernández, P.; Bissett, M.; Ago, H. Synthesis, structure and applications of graphene-based 2D heterostructures. Chem. Soc. Rev. 2017, 46, 4572–4613.

31

Zhang, K. N.; Zhang, T. N.; Cheng, G. H.; Li, T. X.; Wang, S. X.; Wei, W.; Zhou, X. H.; Yu, W. W.; Sun, Y.; Wang, P. et al. Interlayer transition and infrared photodetection in atomically thin type-Ⅱ MoTe2/MoS2 van der Waals heterostructures. ACS Nano 2016, 10, 3852–3858.

32

Li, Q. Y.; Xu, Z. H.; McBride, J. R.; Lian, T. Q. Low threshold multiexciton optical gain in colloidal CdSe/CdTe core/crown type-Ⅱ nanoplatelet heterostructures. ACS Nano 2017, 11, 2545–2553.

33

Dufour, M.; Steinmetz, V.; Izquierdo, E.; Pons, T.; Lequeux, N.; Lhuillier, E.; Legrand, L.; Chamarro, M.; Barisien, T.; Ithurria, S. Engineering bicolor emission in 2D core/crown CdSe/CdSe1−xTex nanoplatelet heterostructures using band-offset tuning. J. Phys. Chem. C 2017, 121, 24816–24823.

34

Lhuillier, E.; Robin, A.; Ithurria, S.; Aubin, H.; Dubertret, B. Electrolyte-gated colloidal nanoplatelets-based phototransistor and its use for bicolor detection. Nano Lett. 2014, 14, 2715–2719.

35

Wang, X. S.; Wang, Z. W.; Zhang, J. D.; Wang, X.; Zhang, Z. P.; Wang, J. L.; Zhu, Z. H.; Li, Z. Y.; Liu, Y.; Hu, X. F. et al. Realization of vertical metal semiconductor heterostructures via solution phase epitaxy. Nat. Commun. 2018, 9, 3611.

36

Zhang, X.; Lai, Z. C.; Tan, C. L.; Zhang, H. Solution-processed two-dimensional MoS2 nanosheets: Preparation, hybridization, and application. Angew. Chem. , Int. Ed. 2016, 55, 8816–8838.

37

Lu, Q. P.; Yu, Y. F.; Ma, Q. L.; Chen, B.; Zhang, H. 2D transition-metal-dichalcogenide-nanosheet-based composites for photocatalytic and electrocatalytic hydrogen evolution reactions. Adv. Mater. 2016, 28, 1917–1933.

38

Min, Y.; Moon, G. D.; Kim, C. E.; Lee, J. H.; Yang, H.; Soon, A.; Jeong, U. Solution-based synthesis of anisotropic metal chalcogenide nanocrystals and their applications. J. Mater. Chem. C 2014, 2, 6222–6248.

39

Tan, C. L.; Zhang, H. Epitaxial growth of hetero-nanostructures based on ultrathin two-dimensional nanosheets. J. Am. Chem. Soc. 2015, 137, 12162–12174.

40

Zhang, Z. W.; Chen, P.; Duan, X. D.; Zang, K. T.; Luo, J.; Duan, X. F. Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices. Science 2017, 357, 788–792.

41

Cai, Z. Y.; Liu, B. L.; Zou, X. L.; Cheng, H. M. Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures. Chem. Rev. 2018, 118, 6091–6133.

42

Liu, X. L.; Hersam, M. C. Interface characterization and control of 2D materials and heterostructures. Adv. Mater. 2018, 30, 1801586.

43

Ekimov, A. I.; Onushchenko, A. A. Quantum size effect in three-dimensional microscopic semiconductor crystals. J. Exp. Theor. Phys. Lett. 1981, 34, 345–349.

44

Efros, Al. L.; Efros, A. L. Interband absorption of light in a semiconductor sphere. Sov. Phys. Semicond. 1982, 16, 772–775. .

45

Brus, L. E. A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites. J. Chem. Phys. 1983, 79, 5566–5571.

46

Carbone, L.; Cozzoli, P. D. Colloidal heterostructured nanocrystals: Synthesis and growth mechanisms. Nano Today 2010, 5, 449–493.

47

Feng, X. M.; Hu, G. Q.; Hu, J. Q. Solution-phase synthesis of metal and/or semiconductor homojunction/heterojunction nanomaterials. Nanoscale 2011, 3, 2099–2117.

48

Min, Y.; Kwak, J.; Soon, A.; Jeong, U. Nonstoichiometric nucleation and growth of multicomponent nanocrystals in solution. Acc. Chem. Res. 2014, 47, 2887–2893.

49

Brochard-Wyart, F.; Di Meglio, J. M.; Quéré, D.; De Gennes, P. G. Spreading of nonvolatile liquids in a continuum picture. Langmuir 1991, 7, 335–338.

50

Habas, S. E.; Lee, H.; Radmilovic, V.; Somorjai, G. A.; Yang, P. D. Shaping binary metal nanocrystals through epitaxial seeded growth. Nat. Mater. 2007, 6, 692–697.

51

Gilroy, K. D.; Ruditskiy, A.; Peng, H. C.; Qin, D.; Xia, Y. N. Bimetallic nanocrystals: Syntheses, properties, and applications. Chem. Rev. 2016, 116, 10414–10472.

52

Xia, Y. N.; Xia, X. H.; Peng, H. C. Shape-controlled synthesis of colloidal metal nanocrystals: Thermodynamic versus kinetic products. J. Am. Chem. Soc. 2015, 137, 7947–7966.

53

Tessier, M. D.; Spinicelli, P.; Dupont, D.; Patriarche, G.; Ithurria, S.; Dubertret, B. Efficient exciton concentrators built from colloidal core/crown CdSe/CdS semiconductor nanoplatelets. Nano Lett. 2014, 14, 207–213.

54

Guzelturk, B.; Kelestemur, Y.; Olutas, M.; Delikanli, S.; Demir, H. V. Amplified spontaneous emission and lasing in colloidal nanoplatelets. ACS Nano 2014, 8, 6599–6605.

55

Wu, K. F.; Li, Q. Y.; Jia, Y. Y.; McBride, J. R.; Xie, Z. X.; Lian, T. Q. Efficient and ultrafast formation of long-lived charge-transfer exciton state in atomically thin cadmium selenide/cadmium telluride type-Ⅱ heteronanosheets. ACS Nano 2015, 9, 961–968.

56

Antanovich, A. V.; Prudnikau, A. V.; Melnikau, D.; Rakovich, Y. P.; Chuvilin, A.; Woggon, U.; Achtstein, A. W.; Artemyev, M. V. Colloidal synthesis and optical properties of type-Ⅱ CdSe-CdTe and inverted CdTe-CdSe core-wing heteronanoplatelets. Nanoscale 2015, 7, 8084–8092.

57

Yadav, S.; Singh, A.; Sapra, S. Long-lived emission in type-Ⅱ CdS/ZnSe core/crown nanoplatelet heterostructures. J. Phys. Chem. C 2017, 121, 27241–27246.

58

Fei, F. C.; Wei, Z. X.; Wang, Q. J.; Lu, P. C.; Wang, S. B.; Qin, Y. Y.; Pan, D. F.; Zhao, B.; Wang, X. F.; Sun, J. et al. Solvothermal synthesis of lateral heterojunction Sb2Te3/Bi2Te3 nanoplates. Nano Lett. 2015, 15, 5905–5911.

59

Liang, L. X.; Deng, Y.; Wang, Y.; Gao, H. L. Epitaxial formation of core-shell heterostructured Bi2Te3@Sb2Te3 hexagonal nanoplates. J. Nanopart. Res. 2014, 16, 2138.

60

Polovitsyn, A.; Dang, Z. Y.; Movilla, J. L.; Martín-García, B.; Khan, A. H.; Bertrand, G. H. V.; Brescia, R.; Moreels, I. Synthesis of air-stable CdSe/ZnS core-shell nanoplatelets with tunable emission wavelength. Chem. Mater. 2017, 29, 5671–5680.

61

Lin, Z. Y.; Yin, A. X.; Mao, J.; Xia, Y.; Kempf, N.; He, Q. Y.; Wang, Y. L.; Chen, C. Y.; Zhang, Y. L.; Ozolins, V. et al. Scalable solution-phase epitaxial growth of symmetry-mismatched heterostructures on two-dimensional crystal soft template. Sci. Adv. 2016, 2, e1600993.

62

Li, S. K.; Xin, C.; Liu, X. R.; Feng, Y. C.; Liu, Y. D.; Zheng, J. X.; Liu, F. S.; Huang, Q. Z.; Qiu, Y. M.; He, J. Q. et al. 2D hetero-nanosheets to enable ultralow thermal conductivity by all scale phonon scattering for highly thermoelectric performance. Nano Energy 2016, 30, 780–789.

63

Sun, D.; Schaak, R. E. Solution-mediated growth of two-dimensional SnSe@GeSe nanosheet heterostructures. Chem. Mater. 2017, 29, 817–822.

64

Moon, G. D.; Ko, S.; Min, Y.; Zeng, J.; Xia, Y. N.; Jeong, U. Chemical transformations of nanostructured materials. Nano Today 2011, 6, 186–203.

65

Moon, G. D.; Ko, S.; Xia, Y.; Jeong, U. Chemical transformations in ultrathin chalcogenide nanowires. ACS Nano 2010, 4, 2307–2319.

66

Son, D. H.; Hughes, S. M.; Yin, Y. D.; Alivisatos, A. P. Cation exchange reactions in ionic nanocrystals. Science 2004, 306, 1009–1012.

67

Camargo, P. H. C.; Lee, Y. H.; Jeong, U.; Zou, Z. Q.; Xia, Y. N. Cation exchange: A simple and versatile route to inorganic colloidal spheres with the same size but different compositions and properties. Langmuir 2007, 23, 2985–2992.

68

Rivest, J. B.; Jain, P. K. Cation exchange on the nanoscale: An emerging technique for new material synthesis, device fabrication, and chemical sensing. Chem. Soc. Rev. 2013, 42, 89–96.

69

Gupta, S.; Kershaw, S. V.; Rogach, A. L. 25th anniversary article: Ion exchange in colloidal nanocrystals. Adv. Mater. 2013, 25, 6923–6944.

70

Akkerman, Q. A.; D'Innocenzo, V.; Accornero, S.; Scarpellini, A.; Petrozza, A.; Prato, M.; Manna, L. Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions. J. Am. Chem. Soc. 2015, 137, 10276–10281.

71

Nedelcu, G.; Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Grotevent, M. J.; Kovalenko, M. V. Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). Nano Lett. 2015, 15, 5635–5640.

72

De Trizio, L.; Manna, L. Forging colloidal nanostructures via cation exchange reactions. Chem. Rev. 2016, 116, 10852–10887.

73

Wark, S. E.; Hsia, C. H.; Son, D. H. Effects of ion solvation and volume change of reaction on the equilibrium and morphology in cation-exchange reaction of nanocrystals. J. Am. Chem. Soc. 2008, 130, 9550–9555.

74

Bouet, C.; Laufer, D.; Mahler, B.; Nadal, B.; Heuclin, H.; Pedetti, S.; Patriarche, G.; Dubertret, B. Synthesis of zinc and lead chalcogenide core and core/shell nanoplatelets using sequential cation exchange reactions. Chem. Mater. 2014, 26, 3002–3008.

75

Zhang, H. T.; Savitzky, B. H.; Yang, J.; Newman, J. T.; Perez, K. A.; Hyun, B. R.; Kourkoutis, L. F.; Hanrath, T.; Wise, F. W. Colloidal synthesis of PbS and PbS/CdS nanosheets using acetate-free precursors. Chem. Mater. 2016, 28, 127–134.

76

Khan, S.; Jiang, Z. F.; Premathilka, S. M.; Antu, A.; Hu, J. J.; Voevodin, A. A.; Roland, P. J.; Ellingson, R. J.; Sun, L. F. Few-atom-thick colloidal PbS/CdS core/shell nanosheets. Chem. Mater. 2016, 28, 5342–5346.

77

Barman, D.; Ghosh, S.; Paul, S.; Dalal, B.; De, S. K. Cation exchange-mediated synthesis of library of plasmomagnetic nanoheterostructures: Transformation of 2-dimensional-shaped Fe7S8 nanoplates to Cu-Fe-S-based ternary compound. Chem. Mater. 2018, 30, 5550–5560.

78

Lee, S.; Baek, S.; Park, J. P.; Park, J. H.; Hwang, D. Y.; Kwak, S. K.; Kim, S. W. Transformation from Cu2−xS nanodisks to Cu2−xS@CuInS2 heteronanodisks via cation exchange. Chem. Mater. 2016, 28, 3337–3344.

79

Park, J.; Park, J.; Lee, J.; Oh, A.; Baik, H.; Lee, K. Janus nanoparticle structural motif control via asymmetric cation exchange in edge-protected Cu1.81S@IrxSy hexagonal nanoplates. ACS Nano 2018, 12, 7996–8005.

80

Liu. Y.; Liu, M. X.; Yin, D. Q.; Qiao, L.; Fu, Z.; Swihart, M. T. Selective cation incorporation into copper sulfide based nanoheterostructures. ACS Nano 2018, 12, 7803–7811.

81

Nasilowski, M.; Nienhaus, L.; Bertram, S. N.; Bawendi, M. G. Colloidal atomic layer deposition growth of PbS/CdS core/shell quantum dots. Chem. Commun. 2017, 53, 869–872.

82

Sagar, L. K.; Walravens, W.; Zhao, Q.; Vantomme, A.; Geiregat, P.; Hens, Z. PbS/CdS core/shell quantum dots by additive, layer-by-layer shell growth. Chem. Mater. 2016, 28, 6953–6959.

83

Sarma, D. D.; Santra, P. K.; Mukherjee, S.; Nag, A. X-ray photoelectron spectroscopy: A unique tool to determine the internal heterostructure of nanoparticles. Chem. Mater. 2013, 25, 1222–1232.

84

Sagar, L. K.; Walravens, W.; Maes, J.; Geiregat, P.; Hens, Z. HgSe/CdE (E = S, Se) core/shell nanocrystals by colloidal atomic layer deposition. J. Phys. Chem. C 2017, 121, 13816–13822.

85

Ithurria, S.; Talapin, D. V. Colloidal atomic layer deposition (c-ALD) using self-limiting reactions at nanocrystal surface coupled to phase transfer between polar and nonpolar media. J. Am. Chem. Soc. 2012, 134, 18585–18590.

86

Slejko, E. A.; Sayevich, V.; Cai, B.; Gaponik, N.; Lughi, V.; Lesnyak, V.; Eychmüller, A. Precise engineering of nanocrystal shells via colloidal atomic layer deposition. Chem. Mater. 2017, 29, 8111–8118.

87

She, C. X.; Fedin, I.; Dolzhnikov, D. S.; Demortière, A.; Schaller, R. D.; Pelton, M.; Talapin, D. V. Low-threshold stimulated emission using colloidal quantum wells. Nano Lett. 2014, 14, 2772–2777.

88

Lorenzon, M.; Christodoulou, S.; Vaccaro, G.; Pedrini, J.; Meinardi, F.; Moreels, I.; Brovelli, S. Reversed oxygen sensing using colloidal quantum wells towards highly emissive photoresponsive varnishes. Nat. Commun. 2015, 6, 6434.

89

Ma, X. D.; Diroll, B. T.; Cho, W.; Fedin, I.; Schaller, R. D.; Talapin, D. V.; Gray, S. K.; Wiederrecht, G. P.; Gosztola, D. J. Size-dependent biexciton quantum yields and carrier dynamics of quasi-two-dimensional core/shell nanoplatelets. ACS Nano 2017, 11, 9119–9127.

90

Yadav, S.; Singh, A.; Thulasidharan, L.; Sapra, S. Surface decides the photoluminescence of colloidal CdSe nanoplatelets based core/shell heterostructures. J. Phys. Chem. C 2018, 122, 820–829.

91

Tessier, M. D.; Mahler, B.; Nadal, B.; Heuclin, H.; Pedetti, S.; Dubertret, B. Spectroscopy of colloidal semiconductor core/shell nanoplatelets with high quantum yield. Nano Lett. 2013, 13, 3321–3328.

92

Shendre, S.; Delikanli, S.; Li, M. J.; Dede, D.; Pan, Z. Y.; Ha, S. T.; Fu, Y. H.; Hernández-Martínez, P. L.; Yu, J. H.; Erdem, O. et al. Ultrahigh-efficiency aqueous flat nanocrystals of CdSe/CdS@Cd1−xZnxS colloidal core/crown@ alloyed-shell quantum wells. Nanoscale 2019, 11, 301–310.

93

Xie, R. G.; Kolb, U.; Li, J. X.; Basché, T.; Mews, A. Synthesis and characterization of highly luminescent CdSe-core CdS/Zn0.5Cd0.5S/ZnS multishell nanocrystals. J. Am. Chem. Soc. 2005, 127, 7480–7488.

94

Chatterjee, A.; Biswas, K. Solution-based synthesis of layered intergrowth compounds of the homologous PbmBi2nTe3n+m series as nanosheets. Angew. Chem., Int. Ed. 2015, 54, 5623–5627.

95

Banik, A.; Biswas, K. Synthetic nanosheets of natural van der Waals heterostructures. Angew. Chem., Int. Ed. 2017, 56, 14561–14566.

96

Geim, A. K.; Grigorieva, I. V. Van der Waals heterostructures. Nature 2013, 499, 419–425.

97

Ithurria, S.; Tessier, M. D.; Mahler, B.; Lobo, R. P. S. M.; Dubertret, B.; Efros, A. L. Colloidal nanoplatelets with two-dimensional electronic structure. Nat. Mater. 2011, 10, 936–941.

98

Achtstein, A. W.; Marquardt, O.; Scott, R.; Ibrahim, M.; Riedl, T.; Prudnikau, A. V.; Antanovich, A.; Owschimikow, N.; Lindner, J. K. N.; Artemyev, M. et al. Impact of shell growth on recombination dynamics and exciton-phonon interaction in CdSe-CdS core-shell nanoplatelets. ACS Nano 2018, 12, 9476–9483.

99

Grim, J. Q.; Christodoulou, S.; Di Stasio, F.; Krahne, R.; Cingolani, R.; Manna, L.; Moreels, I. Continuous-wave biexciton lasing at room temperature using solution-processed quantum wells. Nat. Nanotechnol. 2014, 9, 891–895.

100

Li, M. J.; Zhi, M.; Zhu, H.; Wu, W. Y.; Xu, Q. H.; Jhon, M. H.; Chan, Y. Ultralow-threshold multiphoton-pumped lasing from colloidal nanoplatelets in solution. Nat. Commun. 2015, 6, 8513.

101

She, C. X.; Fedin, I.; Dolzhnikov, D. S.; Dahlberg, P. D.; Engel, G. S.; Schaller, R. D.; Talapin, D. V. Red, yellow, green, and blue amplified spontaneous emission and lasing using colloidal CdSe nanoplatelets. ACS Nano 2015, 9, 9475–9485.

102

Kelestemur, Y.; Dede, D.; Gungor, K.; Usanmaz, C. F.; Erdem, O.; Demir, H. V. Alloyed heterostructures of CdSexS1−x nanoplatelets with highly tunable optical gain performance. Chem. Mater. 2017, 29, 4857–4865.

103

Giovanella, U.; Pasini, M.; Lorenzon, M.; Galeotti, F.; Lucchi, C.; Meinardi, F.; Luzzati, S.; Dubertret, B.; Brovelli, S. Efficient solution-processed nanoplatelet-based light-emitting diodes with high operational stability in air. Nano Lett. 2018, 18, 3441–3448.

104

Erdem, T.; Demir, H. V. Colloidal nanocrystals for quality lighting and displays: Milestones and recent developments. Nanophotonics 2016, 5, 74–95.

105

Fan, F. J.; Kanjanaboos, P.; Saravanapavanantham, M.; Beauregard, E.; Ingram, G.; Yassitepe, E.; Adachi, M. M.; Voznyy, O.; Johnston, A. K.; Walters, G. et al. Colloidal CdSe1−xSx nanoplatelets with narrow and continuously-tunable electroluminescence. Nano Lett. 2015, 15, 4611–4615.

106

Sharma, M.; Gungor, K.; Yeltik, A.; Olutas, M.; Guzelturk, B.; Kelestemur, Y.; Erdem, T.; Delikanli, S.; McBride, J. R.; Demir, H. V. Near-unity emitting copper-doped colloidal semiconductor quantum wells for luminescent solar concentrators. Adv. Mater. 2017, 29, 1700821.

107

Kormilina, T. K.; Cherevkov, S. A.; Fedorov, A. V.; Baranov, A. V. Cadmium chalcogenide nano-heteroplatelets: Creating advanced nanostructured materials by shell growth, substitution, and attachment. Small 2017, 13, 1702300.

108

Gao, Y.; Li, M. J.; Delikanli, S.; Zheng, H. Y.; Liu, B. Q.; Dang, C.; Sum, T. C.; Demir, H. V. Low-threshold lasing from colloidal CdSe/CdSeTe core/alloyed-crown type-Ⅱ heteronanoplatelets. Nanoscale 2018, 10, 9466–9475.

109

Kelestemur, Y.; Guzelturk, B.; Erdem, O.; Olutas, M.; Erdem, T.; Usanmaz, C. F.; Gungor, K.; Demir, H. V. CdSe/CdSe1−xTex core/crown heteronanoplatelets: Tuning the excitonic properties without changing the thickness. J. Phys. Chem. C 2017, 121, 4650–4658.

110

Pedetti, S.; Ithurria, S.; Heuclin, H.; Patriarche, G.; Dubertret, B. Type-Ⅱ CdSe/CdTe core/crown semiconductor nanoplatelets. J. Am. Chem. Soc. 2014, 136, 16430–16438.

111

Li, Q. Y.; Wu, K. F.; Chen, J. Q.; Chen, Z. Y.; McBride, J. R.; Lian, T. Q. Size-independent exciton localization efficiency in colloidal CdSe/CdS core/crown nanosheet type-Ⅰ heterostructures. ACS Nano 2016, 10, 3843–3851.

112

Delikanli, S.; Guzelturk, B.; Hernández-Martínez, P. L.; Erdem, T.; Kelestemur, Y.; Olutas, M.; Akgul, M. Z.; Demir, H. V. Continuously tunable emission in inverted type-Ⅰ CdS/CdSe core/crown semiconductor nanoplatelets. Adv. Funct. Mater. 2015, 25, 4282–4289.

113

Kunneman, L. T.; Schins, J. M.; Pedetti, S.; Heuclin, H.; Grozema, F. C.; Houtepen, A. J.; Dubertret, B.; Siebbeles, L. D. A. Nature and decay pathways of photoexcited states in CdSe and CdSe/CdS nanoplatelets. Nano Lett. 2014, 14, 7039–7045.

114

Prudnikau, A.; Chuvilin, A.; Artemyev, M. CdSe-CdS nanoheteroplatelets with efficient photoexcitation of central CdSe region through epitaxially grown CdS wings. J. Am. Chem. Soc. 2013, 135, 14476–14479.

115

Kunneman, L. T.; Tessier, M. D.; Heuclin, H.; Dubertret, B.; Aulin, Y. V.; Grozema, F. C.; Schins, J. M.; Siebbeles, L. D. A. Bimolecular Auger recombination of electron-hole pairs in two-dimensional CdSe and CdSe/CdZnS core/shell nanoplatelets. J. Phys. Chem. Lett. 2013, 4, 3574–3578.

116

Kelestemur, Y.; Olutas, M.; Delikanli, S.; Guzelturk, B.; Akgul, M. Z.; Demir, H. V. Type-Ⅱ colloidal quantum wells: CdSe/CdTe core/crown heteronanoplatelets. J. Phys. Chem. C 2015, 119, 2177–2185.

117

Zhang F. J.; Wang, S. J.; Wang, L.; Lin, Q. L.; Shen, H. B.; Cao, W. R.; Yang, C. C.; Wang, H. Z.; Yu, L.; Du, Z. L. et al. Super color purity green quantum dot light-emitting diodes fabricated by using CdSe/CdS nanoplatelets. Nanoscale 2016, 8, 12182–12188.

118

Lee, K. H.; Lee, J. H.; Kang, H. D.; Park, B.; Kwon, Y.; Ko, H.; Lee, C.; Lee, J.; Yang, H. Over 40 cd/A efficient green quantum dot electroluminescent device comprising uniquely large-sized quantum dots. ACS Nano 2014, 8, 4893–4901.

119

Chen, Z. Y.; Nadal, B.; Mahler, B.; Aubin, H.; Dubertret, B. Quasi-2D colloidal semiconductor nanoplatelets for narrow electroluminescence. Adv. Funct. Mater. 2014, 24, 295–302.

120

Dede, D.; Taghipour, N.; Quliyeva, U.; Sak, M.; Kelestemur, Y.; Gungor, K.; Demir, H. V. Highly stable multicrown heterostructures of type-Ⅱ nanoplatelets for ultralow threshold optical gain. Chem. Mater. 2019, 31, 1818–1826.

121

He, J.; Tritt, T. M. Advances in thermoelectric materials research: Looking back and moving forward. Science 2017, 357, eaak9997.

122

Bell, L. E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 2008, 321, 1457–1461.

123

Sajid, M.; Hassan, I.; Rahman, A. An overview of cooling of thermoelectric devices. Renew. Sustain. Energy Rev. 2017, 78, 15–22.

124

Suarez, F.; Nozariasbmarz, A.; Vashaee, D.; Öztürk, M. C. Designing thermoelectric generators for self-powered wearable electronics. Energy Environ. Sci. 2016, 9, 2099–2113.

125

Kim, S. J.; Choi, H.; Kim, Y.; We, J. H.; Shin, J. S.; Lee, H. E.; Oh, M. W.; Lee, K. J.; Cho, B. J. Post ionized defect engineering of the screen-printed Bi2Te2.7Se0.3 thick film for high performance flexible thermoelectric generator. Nano Energy 2017, 31, 258–263.

126

Yang, Y.; Wei, X. J.; Liu, J. Suitability of a thermoelectric power generator for implantable medical electronic devices. J. Phys. D Appl. Phys. 2007, 40, 5790–5800.

127

Leonov, V.; Vullers, R. J. M. Wearable electronics self-powered by using human body heat: The state of the art and the perspective. J. Renew. Sustain. Energy 2009, 1, 062701.

128

Guo, Y.; Dun, C. C.; Xu, J. W.; Li, P. Y.; Huang, W. X.; Mu, J. K.; Hou, C. Y.; Hewitt, C. A.; Zhang, Q. H.; Li, Y. G. et al. Wearable thermoelectric devices based on Au-decorated two-dimensional MoS2. ACS Appl. Mater. Interfaces 2018, 10, 33316–33321.

129

Yang, L.; Chen, Z. G.; Dargusch, M. S.; Zou, J. High performance thermoelectric materials: Progress and their applications. Adv. Energy Mater. 2018, 8, 1701797.

130

Min, Y.; Roh, J. W.; Yang, H.; Park, M.; Kim, S. I.; Hwang, S.; Lee, S. M.; Lee, K. H.; Jeong, U. Surfactant-free scalable synthesis of Bi2Te3 and Bi2Se3 nanoflakes and enhanced thermoelectric properties of their nanocomposites. Adv. Mater. 2013, 25, 1425–1429.

131

Zhao, D. L.; Tan, G. A review of thermoelectric cooling: Materials, modeling and applications. Appl. Therm. Eng. 2014, 66, 15–24.

132

Poudel, B.; Hao, Q.; Ma, Y.; Lan, Y. C.; Minnich, A.; Yu, B.; Yan, X.; Wang, D. Z.; Muto, A.; Vashaee, D. et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 2008, 320, 634–638.

133

Ding, D. F.; Wang, D. W.; Zhao, M.; Lv, J. W.; Jiang, H.; Lu, C. G.; Tang, Z. Y. Interface engineering in solution-processed nanocrystal thin films for improved thermoelectric performance. Adv. Mater. 2017, 29, 1603444.

134

Tang, Y. L.; Gibbs, Z. M.; Agapito, L. A.; Li, G. D.; Kim, H. S.; Nardelli, M. B.; Curtarolo, S.; Snyder, G. J. Convergence of multi-valley bands as the electronic origin of high thermoelectric performance in CoSb3 skutterudites. Nat. Mater. 2015, 14, 1223–1228.

135

Dolyniuk, J. A.; Owens-Baird, B.; Wang, J.; Zaikina, J. V.; Kovnir, K. Clathrate thermoelectrics. Mater. Sci. Eng. R Rep. 2016, 108, 1–46.

136

Pei, Y. Z.; Shi, X. Y.; LaLonde, A.; Wang, H.; Chen, L. D.; Snyder, G. J. Convergence of electronic bands for high performance bulk thermoelectrics. Nature 2011, 473, 66–69.

137

Zhao, L. D.; Tan, G. J.; Hao, S. Q.; He, J. Q.; Pei, Y. L.; Chi, H.; Wang, H.; Gong, S. K.; Xu, H. B.; Dravid, V. P. et al. Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe. Science 2016, 351, 141–144.

138

Hicks, L. D.; Dresselhaus, M. S. Effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B 1993, 47, 12727–12731.

139

Hicks, L. D.; Dresselhaus, M. S. Thermoelectric figure of merit of a one-dimensional conductor. Phys. Rev. B 1993, 47, 16631–16634.

140

Heremans, J. P.; Dresselhaus, M. S.; Bell, L. E.; Morelli, D. T. When thermoelectrics reached the nanoscale. Nat. Nanotechnol. 2013, 8, 471–473.

141

Medlin, D. L.; Snyder, G. J. Interfaces in bulk thermoelectric materials: A review for current opinion in colloid and interface science. Curr. Opin. Colloid Interface Sci. 2009, 14, 226–235.

142

Shapira, E.; Holtzman, A.; Marchak, D.; Selzer, Y. Very high thermopower of Bi Nanowires with embedded quantum point contacts. Nano Lett. 2012, 12, 808–812.

143

Zhang, Y. C.; Stucky, G. D. Heterostructured approaches to efficient thermoelectric materials. Chem. Mater. 2014, 26, 837–848.

144

Han, C.; Sun, Q.; Li, Z.; Dou, S. X. Thermoelectric enhancement of different kinds of metal chalcogenides. Adv. Energy Mater. 2016, 6, 1600498.

145

Harman, T. C.; Taylor, P. J.; Walsh, M. P.; LaForge, B. E. Quantum dot superlattice thermoelectric materials and devices. Science 2002, 297, 2229–2232.

146

Zhao, L. D.; Lo, S. H.; Zhang, Y. S.; Sun, H.; Tan, G. J.; Uher, C.; Wolverton, C.; Dravid, V. P.; Kanatzidis, M. G. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 2014, 508, 373–377.

147

Biswas, K.; He, J. Q.; Blum, I. D.; Wu, C. I.; Hogan, T. P.; Seidman, D. N.; Dravid, V. P.; Kanatzidis, M. G. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 2012, 489, 414–418.

148

Ding, D. F.; Lu, C. G.; Tang, Z. Y. Bottom up chalcogenide thermoelectric materials from solution-processed nanostructures. Adv. Mater. Interfaces 2017, 4, 1700517.

149

Zhao, L. D.; Chang, C.; Tan, G. J.; Kanatzidis, M. G. SnSe: A remarkable new thermoelectric material. Energy Environ. Sci. 2016, 9, 3044–3060.

150

Zhang, Y.; Liu, Y.; Lim, K. H.; Xing, C. C.; Li, M. Y.; Zhang, T.; Tang, P. Y.; Arbiol, J.; Llorca, J.; Ng, K. M. et al. Tin diselenide molecular precursor for solution-processable thermoelectric materials. Angew. Chem., Int. Ed. 2018, 57, 17063–17068.

151

Yang, D. F.; Yao, W.; Chen, Q. F.; Peng, K. L.; Jiang, P. F.; Lu, X.; Uher, C.; Yang, T.; Wang, G. Y.; Zhou, X. Y. Cr2Ge2Te6: High thermoelectric performance from layered structure with high symmetry. Chem. Mater. 2016, 28, 1611–1615.

152

Roychowdhury, S.; Samanta, M.; Perumal, S.; Biswas, K. Germanium chalcogenide thermoelectrics: Electronic structure modulation and low lattice thermal conductivity. Chem. Mater. 2018, 30, 5799–5813.

153

Yin, X.; Liu, J. Y.; Chen, L.; Wu, L. M. High thermoelectric performance of In4Se3-based materials and the influencing factors. Acc. Chem. Res. 2018, 51, 240–247.

154

Zhang, Q. H.; Ai X.; Wang, L. J.; Chang, Y. X.; Luo, W.; Jiang, W.; Chen, L. D. Improved thermoelectric performance of silver nanoparticles-dispersed Bi2Te3 composites deriving from hierarchical two-phased heterostructure. Adv. Funct. Mater. 2015, 25, 966–976.

155

Dun, C. C.; Liu, Y.; Al-Qawasmeh, A.; Hewitt, C. A.; Guo, Y.; Xu, J. W.; Jiang, Q. K.; Wang, J.; Marcus, G.; Cadavid, D. et al. Topological doping effects in 2D chalcogenide thermoelectrics. 2D Mater. 2018, 5, 045008.

156

Son, J. S.; Choi, M. K.; Han, M. K.; Park, K.; Kim, J. Y.; Lim, S. J.; Oh, M.; Kuk, Y.; Park, C.; Kim, S. J. et al. n-Type nanostructured thermoelectric materials prepared from chemically synthesized ultrathin Bi2Te3 nanoplates. Nano Lett. 2012, 12, 640–647.

157

Luo, Y. B.; Du, C. F.; Liang, Q. H.; Zheng, Y.; Zhu, B. B.; Hu, H. L.; Khor, K. A.; Xu, J. W.; Yan, Q. Y.; Kanatzidis, M. G. Enhancement of thermoelectric performance in CuSbSe2 nanoplate-based pellets by texture engineering and carrier concentration optimization. Small 2018, 14, 1803092.

158

Ahmed, S. N.; Haider, W. Heterogeneous photocatalysis and its potential applications in water and wastewater treatment: A review. Nanotechnology 2018, 29, 342001.

159

Li, K.; Peng, B. S.; Peng, T. Y. Recent advances in heterogeneous photocatalytic CO2 conversion to solar fuels. ACS Catal. 2016, 6, 7485–7527.

160

Kanhere, P.; Chen, Z. A review on visible light active perovskite-based photocatalysts. Molecules 2014, 19, 19995–20022.

161

Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38.

162

Zhu, J. F.; Zäch, M. Nanostructured materials for photocatalytic hydrogen production. Curr. Opin. Colloid. Interface Sci. 2009, 14, 260–269.

163

Meshram, S. P.; Adhyapak, P. V.; Mulik, U. P.; Amalnerkar, D. P. Facile synthesis of CuO nanomorphs and their morphology dependent sunlight driven photocatalytic properties. Chem. Eng. J. 2012, 204–206, 158–168.

164

Marschall, R. Semiconductor composites: Strategies for enhancing charge carrier separation to improve photocatalytic activity. Adv. Funct. Mater. 2014, 24, 2421–2440.

165

Vesborg, P. C. K.; Seger, B.; Chorkendorff, I. Recent development in hydrogen evolution reaction catalysts and their practical implementation. J. Phys. Chem. Lett. 2015, 6, 951–957.

166

Wang, H. T.; Lu, Z. Y.; Xu, S. C.; Kong, D. S.; Cha, J. J.; Zheng, G. Y.; Hsu, P. C.; Yan, K.; Bradshaw, D.; Prinz, F. B. et al. Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction. Proc. Natl. Acad. Sci. USA 2013, 110, 19701–19706.

167

Leung, D. Y. C.; Fu, X. L.; Wang, C. F.; Ni, M.; Leung, M. K. H.; Wang, X. X.; Fu, X. Z. Hydrogen production over titania-based photocatalysts. ChemSusChem 2010, 3, 681–694.

168

Sakai, N.; Ebina, Y.; Takada, K.; Sasaki, T. Electronic band structure of titania semiconductor nanosheets revealed by electrochemical and photoelectrochemical studies. J. Am. Chem. Soc. 2004, 126, 5851–5858.

169

Ma, Y.; Wang, X. L.; Jia, Y. S.; Chen, X. B.; Han, H. X.; Li, C. Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chem. Rev. 2014, 114, 9987–10043.

170

Hashimoto, K.; Irie, H.; Fujishima, A. TiO2 photocatalysis: A historical overview and future prospects. Jpn. J. Appl. Phys. 2005, 44, 8269–8285.

171

Kumar, S. G.; Devi, L. G. Review on modified TiO2 photocatalysis under UV/visible light: Selected results and related mechanisms on interfacial charge carrier transfer dynamics. J. Phys. Chem. A 2011, 115, 13211–13241.

172

Zhang, N.; Liu, S. Q.; Fu, X. Z.; Xu, Y. J. Synthesis of M@TiO2 (M = Au, Pd, Pt) core-shell nanocomposites with tunable photoreactivity. J. Phys. Chem. C 2011, 115, 9136–9145.

173

Li, J. T.; Wu, N. Q. Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: A review. Catal. Sci. Technol. 2015, 5, 1360–1384.

174

Park, H.; Choi, W.; Hoffmann, M. R. Effects of the preparation method of the ternary CdS/TiO2/Pt hybrid photocatalysts on visible light-induced hydrogen production. J. Mater. Chem. 2008, 18, 2379–2385.

175

Wu, N. Q. Plasmonic metal-semiconductor photocatalysts and photoelectrochemical cells: A review. Nanoscale 2018, 10, 2679–2696.

176

Jaramillo, T. F.; Jørgensen. K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 2007, 317, 100–102.

177

Karunadasa, H. I.; Montalvo, E.; Sun, Y. J.; Majda, M.; Long, J. R.; Chang, C. J. A molecular MoS2 edge site mimic for catalytic hydrogen generation. Science 2012, 335, 698–702.

178

Kibsgaard, J.; Chen, Z. B.; Reinecke, B. N.; Jaramillo, T. F. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat. Mater. 2012, 11, 963–969.

179

Deng, J.; Li, H. B.; Xiao, J. P.; Tu, Y. C.; Deng, D. H.; Yang, H. X.; Tian, H. F.; Li, J. Q.; Ren, P. J.; Bao, X. H. Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping. Energy Environ. Sci. 2015, 8, 1594–1601.

180

Low, J.; Yu, J. G.; Jaroniec, M.; Wageh, S.; Al-Ghamdi, A. A. Heterojunction photocatalysts. Adv. Mater. 2017, 29, 1601694.

181

Wu, X.; Yu, Y. F.; Liu, Y.; Xu, Y.; Liu, C. B.; Zhang, B. Synthesis of hollow CdxZn1−xSe nanoframes through the selective cation exchange of inorganic-organic hybrid ZnSe-amine nanoflakes with cadmium ions. Angew. Chem., Int. Ed. 2012, 51, 3211–3215.

182

Xu, Y.; Zhao, W. W.; Xu, R.; Shi, Y. M.; Zhang, B. Synthesis of ultrathin CdS nanosheets as efficient visible-light-driven water splitting photocatalysts for hydrogen evolution. Chem. Commun. 2013, 49, 9803–9805.

183

Li, M.; Ruan, H. R.; Yuan, X. Q.; Chen, Y. S.; Wang, X. D.; Liu, Y. P.; Lu, Z. H.; Hai, J. F. Construction of 2D MoS2/PbS heterojunction nanocomposites with enhanced photoelectric property. Mater. Lett. 2018, 212, 82–85.

184

Li, Y. T.; Huang, L.; Li, B.; Wang, X. T.; Zhou, Z. Q.; Li, J. B.; Wei, Z. M. Co-nucleus 1D/2D heterostructures with Bi2S3 nanowire and MoS2 monolayer: One-step growth and defect-induced formation mechanism. ACS Nano 2016, 10, 8938–8946.

185

Si, M. W.; Liao, P. Y.; Qiu, G.; Duan, Y. Q.; Ye, P. D. Ferroelectric field-effect transistors based on MoS2 and CuInP2S6 two-dimensional van der waals heterostructure. ACS Nano 2018, 12, 6700–6705.

186

Zhang, Z. Y.; Huang, J. D.; Zhang, M. Y.; Yuan, Q.; Dong, B. Ultrathin hexagonal SnS2 nanosheets coupled with g-C3N4 nanosheets as 2D/2D heterojunction photocatalysts toward high photocatalytic activity. Appl. Catal. B Environ. 2015, 163, 298–305.

187

Chen, J. Z.; Wu, X. J.; Yin, L. S.; Li, B.; Hong, X.; Fan, Z. X.; Chen, B.; Xue, C.; Zhang, H. One-pot synthesis of CdS nanocrystals hybridized with single-layer transition-metal dichalcogenide nanosheets for efficient photocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2015, 54, 1210–1214.

188

Li, M.; Zhang, Q. Y.; Ruan, H. R.; Wang, X. D.; Liu, Y. P.; Lu, Z. H.; Hai, J. F. An in-situ growth approach to 2D MoS2-2D PbS heterojunction composites with improved photocatalytic activity. J. Solid State Chem. 2019, 270, 98–103.

189

Deng, D. H.; Novoselov, K. S.; Fu, Q.; Zheng, N. F.; Tian, Z. Q.; Bao, X. H. Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechnol. 2016, 11, 218–230.

190

Yang, M. Q.; Xu, Y. J.; Lu, W. H.; Zeng, K. Y.; Zhu, H.; Xu, Q. H.; Ho, G. W. Self-surface charge exfoliation and electrostatically coordinated 2D hetero-layered hybrids. Nat. Commun. 2017, 8, 14224.

191

Cook, T. R.; Dogutan, D. K.; Reece, S. Y.; Surendranath, Y.; Teets, T. S.; Nocera, D. G. Solar energy supply and storage for the legacy and nonlegacy worlds. Chem. Rev. 2010, 110, 6474–6502.

192

Xiao, P.; Chen, W.; Wang, X. A review of phosphide-based materials for electrocatalytic hydrogen evolution. Adv. Energy Mater. 2015, 5, 1500985.

193

Zou, X. X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148–5180.

194

Yang, Y. Q.; Zhang, K.; Lin, H. L.; Li, X.; Chan, H. C.; Yang, L. C.; Gao, Q. S. MoS2-Ni3S2 heteronanorods as efficient and stable bifunctional electrocatalysts for overall water splitting. ACS Catal. 2017, 7, 2357–2366.

195

Fosdick, S. E.; Berglund, S. P.; Mullins, B.; Crooks, R. M. Evaluating electrocatalysts for the hydrogen evolution reaction using bipolar electrode arrays: Bi- and trimetallic combinations of Co, Fe, Ni, Mo, and W. ACS Catal. 2014, 4, 1332–1339.

196

Wang, D. Y.; Gong, M.; Chou, H. L.; Pan, C. J.; Chen, H. A.; Wu, Y. P.; Lin, M. C.; Guan, M. Y.; Yang, J.; Chen, C. W. et al. Highly active and stable hybrid catalyst of cobalt-doped FeS2 nanosheets-carbon nanotubes for hydrogen evolution reaction. J. Am. Chem. Soc. 2015, 137, 1587–1592.

197

Chen, W. F.; Sasaki, K.; Ma, C.; Frenkel, A. I.; Marinkovic, N.; Muckerman, J. T.; Zhu, Y. M.; Adzic, R. R. Hydrogen-evolution catalysts based on non-noble metal nickel-molybdenum nitride nanosheets. Angew. Chem., Int. Ed. 2012, 51, 6131–6135.

198

Wu, H. B.; Xia, B. Y.; Yu, L.; Yu, X. Y.; Lou, X. W. Porous molybdenum carbide nano-octahedrons synthesized via confined carburization in metal-organic frameworks for efficient hydrogen production. Nat. Commun. 2015, 6, 6512.

199

Gao, M. R.; Liang, J. X.; Zheng, Y. R.; Xu, Y. F.; Jiang, J.; Gao, Q.; Li, J.; Yu, S. H. An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation. Nat. Commun. 2015, 6, 5982.

200

Zhang, R.; Wang, X. X.; Yu, S. J.; Wen, T.; Zhu, X. W.; Yang, F. X.; Sun, X. N.; Wang, X. K.; Hu, W. P. Ternary NiCo2Px nanowires as pH-universal electrocatalysts for highly efficient hydrogen evolution reaction. Adv. Mater. 2017, 29, 1605502.

201

Vrubel, H.; Hu, X. L. Molybdenum boride and carbide catalyze hydrogen evolution in both acidic and basic solutions. Angew. Chem., Int. Ed. 2012, 51, 12703–12706.

202

Jun, B. M.; Kim, S.; Heo, J.; Park, C. M.; Her, N.; Jang, M.; Huang, Y.; Han, J.; Yoon, Y. Review of MXenes as new nanomaterials for energy storage/delivery and selected environmental applications. Nano Res. 2019, 12, 471–487.

203

Chen, J. N.; Yuan, X. L.; Lyu, F. L.; Zhong, Q. X.; Hu, H. C.; Pan, Q.; Zhang, Q. Integrating MXene nanosheets with cobalt-tipped carbon nanotubes for an efficient oxygen reduction reaction. J. Mater. Chem. A 2019, 7, 1281–1286.

204

Hinnemann, B.; Moses, P. G.; Bonde, J.; Jørgensen, K. P.; Nielsen, J. H.; Horch, S.; Chorkendorff, I.; Nørskov, J. K. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 2005, 127, 5308–5309.

205

Zhang, J.; Wang, T.; Liu, P.; Liu, S. H.; Dong, R. H.; Zhuang, X. D.; Chen, M. W.; Feng, X. L. Engineering water dissociation sites in MoS2 nanosheets for accelerated electrocatalytic hydrogen production. Energy Environ. Sci. 2016, 9, 2789–2793.

206

Kim, J.; Byun, S.; Smith, A. J.; Yu, J.; Huang, J. X. Enhanced electrocatalytic properties of transition-metal dichalcogenides sheets by spontaneous gold nanoparticle decoration. J. Phys. Chem. Lett. 2013, 4, 1227–1232.

207

Zhang, Z. Y.; Li, W. Y.; Yuen, M. F.; Ng, T. W.; Tang, Y. B.; Lee, C. S.; Chen, X. F.; Zhang, W. J. Hierarchical composite structure of few-layers MoS2 nanosheets supported by vertical graphene on carbon cloth for high-performance hydrogen evolution reaction. Nano Energy 2015, 18, 196–204.

208

Zhou, X. L.; Liu, Y.; Ju, H. X.; Pan, B. C.; Zhu, J. F.; Ding, T.; Wang, C. D.; Yang, Q. Design and epitaxial growth of MoSe2-NiSe vertical heteronanostructures with electronic modulation for enhanced hydrogen evolution reaction. Chem. Mater. 2016, 28, 1838–1846.

209

Das, P.; Fu, Q.; Bao, X. H.; Wu, Z. S. Recent advances in the preparation, characterization, and applications of two-dimensional heterostructures for energy storage and conversion. J. Mater. Chem. A 2018, 6, 21747– 21784.

210

Lee, J.; Wu, Y.; Peng, Z. B. Hetero-nanostructured materials for high-power lithium ion batteries. J. Colloid. Interface Sci. 2018, 529, 505–519.

211

Oh, S. M.; Patil, S. B.; Jin, X. Y.; Hwang, S. J. Recent applications of 2D inorganic nanosheets for emerging energy storage system. Chem. —Eur. J. 2018, 24, 4757–4773.

212

Cao, X. H.; Tan, C. L.; Zhang, X.; Zhao, W.; Zhang, H. Solution-processed two-dimensional metal dichalcogenide-based nanomaterials for energy storage and conversion. Adv. Mater. 2016, 28, 6167–6196.

213

Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366–377.

214

Liu, H.; Su, D. W.; Wang, G. X.; Qiao, S. Z. An ordered mesoporous WS2 anode material with superior electrochemical performance for lithium ion batteries. J. Mater. Chem. 2012, 22, 17437–17440.

215

Wang, H.; Wang, X. Y.; Wang, L.; Wang, J.; Jiang, D. L.; Li, G. P.; Zhang, Y.; Zhong, H. H.; Jiang, Y. Phase transition mechanism and electrochemical properties of nanocrystalline MoSe2 as anode materials for the high performance lithium-ion battery. J. Phys. Chem. C 2015, 119, 10197–10205.

216

Zhu, C. B.; Mu, X. K.; van Aken, P. A.; Maier, J.; Yu, Y. Fast Li storage in MoS2-graphene-carbon nanotube nanocomposites: Advantageous functional integration of 0D, 1D, and 2D nanostructures. Adv. Energy Mater. 2014, 5, 1401170.

217

Zhai, C. X.; Du, N.; Zhang, H.; Yu, J. X.; Yang, D. R. Multiwalled carbon nanotubes anchored with SnS2 nanosheets as high-performance anode materials of lithium-ion batteries. ACS Appl. Mater. Interfaces 2011, 3, 4067–4074.

218

Lu, C. X.; Liu, W. W.; Li, H.; Tay, B. K. A binder-free CNT network-MoS2 composite as a high performance anode material in lithium ion batteries. Chem. Commun. 2014, 50, 3338–3340.

219

Xu, X. D.; Rout, C. S.; Yang, J.; Cao, R. G.; Oh, P.; Shin, H. S.; Cho, J. Freeze-dried WS2 composites with low content of graphene as high-rate lithium storage materials. J. Mater. Chem. A 2013, 1, 14548–14554.

220

Chang, K.; Chen, W. X. L-Cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries. ACS Nano 2011, 5, 4720–4728.

221

Chen, C.; Xie, X. Q.; Anasori, B.; Sarycheva, A.; Makaryan, T.; Zhao, M. Q.; Urbankowski, P.; Miao, L.; Jiang, J. J.; Gogotsi, Y. MoS2-on-MXene heterostructures as highly reversible anode materials for lithium-ion batteries. Angew. Chem., Int. Ed. 2018, 57, 1846–1850.

222

Xie, X. Q.; Ao, Z. M.; Su, D. W.; Zhang, J. Q.; Wang, G. X. MoS2/graphene composite anodes with enhanced performance for sodium-ion batteries: The role of the two-dimensional heterointerface. Adv. Funct. Mater. 2015, 25, 1393–1403.

223

Chen, D. Y.; Ji, G.; Ding, B.; Ma, Y.; Qu, B. H.; Chen, W. X.; Lee, J. Y. In situ nitrogenated graphene-few-layer WS2 composites for fast and reversible Li+ storage. Nanoscale 2013, 5, 7890–7896.

224

Liu, Y.; Wang, W.; Wang, Y. W.; Peng, X. S. Homogeneously assembling like-charged WS2 and GO nanosheets lamellar composite films by filtration for highly efficient lithium ion batteries. Nano Energy 2014, 7, 25–32.

225

Su, D. W.; Dou, S. X.; Wang, G. X. WS2@graphene nanocomposites as anode materials for Na-ion batteries with enhanced electrochemical performances. Chem. Commun. 2014, 50, 4192–4195.

226

Liu, Y.; Zhu, M. Q.; Chen, D. Sheet-like MoSe2/C composites with enhanced Li-ion storage properties. J. Mater. Chem. A 2015, 3, 11857–11862.

227

Ma, L.; Zhou, X. P.; Xu, L. M.; Xu, X. Y.; Zhang, L. L.; Chen, W. X. Ultrathin few-layered molybdenum selenide/graphene hybrid with superior electrochemical Li-storage performance. J. Power Sources 2015, 285, 274–280.

228

Zhou, T. F.; Pang, W. K.; Zhang, C. F.; Yang, J. P.; Chen, Z. X.; Liu, H. K.; Guo, Z. P. Enhanced sodium-ion battery performance by structural phase transition from two-dimensional hexagonal-SnS2 to orthorhombic-SnS. ACS Nano 2014, 8, 8323–8333.

229

Luo, B.; Fang, Y.; Wang, B.; Zhou, J. S.; Song, H. H.; Zhi, L. J. Two dimensional graphene-SnS2 hybrids with superior rate capability for lithium ion storage. Energy Environ. Sci. 2012, 5, 5226–5230.

230

Chang, K.; Wang, Z.; Huang, G. H.; Li, H.; Chen, W. X.; Lee, J. Y. Few-layer SnS2/graphene hybrid with exceptional electrochemical performance as lithium-ion battery anode. J. Power Sources 2012, 201, 259–266.

231

Qu, B. H.; Ma, C. Z.; Ji, G.; Xu, C. H.; Xu, J.; Meng, Y. S.; Wang, T. H.; Lee, J. Y. Layered SnS2-reduced graphene oxide composite—A high-capacity, high-rate, and long-cycle life sodium-ion battery anode material. Adv. Mater. 2014, 26, 3854–3859.

232

Du, Y. P.; Yin, Z. Y.; Zhu, J. X.; Huang, X.; Wu, X. J.; Zeng, Z. Y.; Yan, Q. Y.; Zhang, H. A general method for the large-scale synthesis of uniform ultrathin metal sulphide nanocrystals. Nat. Commun. 2012, 3, 1177.

233

Che, G. L.; Jirage, K. B.; Fisher, E. R.; Martin, C. R.; Yoneyama, H. Chemical-vapor deposition-based template synthesis of microtubular TiS2 battery electrodes. J. Electrochem. Soc. 1997, 114, 4296–4302.

234

Ali, I.; Ullah, Z.; Rehan, I.; Khalil, A.; Habib, M.; Masood, H. T.; Sohail, Y.; Waseem, M. Annealing disintegrates Cu2MoS4 nanosheets into MoS2 and Cu2S nanoheterostructures. J. Mater. Sci. Mater. Electron. 2017, 28, 15936–15941.

235

Seh, Z. W.; Yu, J. H.; Li, W. Y.; Hsu, P. C.; Wang, H. T.; Sun, Y. M.; Yao, H. B.; Zhang, Q. F.; Cui, Y. Two-dimensional layered transition metal disulphides for effective encapsulation of high-capacity lithium sulphide cathodes. Nat. Commun. 2014, 5, 5017.

236

Giri, A.; Yang, H.; Thiyagarajan, K.; Jang, W.; Myoung, J. M.; Singh, R.; Soon, A.; Cho, K.; Jeong, U. One-step solution phase growth of transition metal dichalcogenide thin films directly on solid substrates. Adv. Mater. 2017, 29, 1700291.

237

Giri, A.; Park, G.; Yang, H.; Pal, M.; Kwak, J.; Jeong, U. Synthesis of 2D metal chalcogenide thin films through the process involving solution-phase deposition. Adv. Mater. 2018, 30, 1707577.

238

Liu, W. Y.; Lee, J. S.; Talapin, D. V. Ⅲ-Ⅴ nanocrystals capped with molecular metal chalcogenide ligands: High electron mobility and ambipolar photoresponse. J. Am. Chem. Soc. 2013, 135, 1349–1357.

239

Zhang, H.; Jang, J.; Liu, W. Y.; Talapin, D. V. Colloidal nanocrystals with inorganic halide, pseudohalide, and halometallate ligands. ACS Nano 2014, 8, 7359–7369.

240

Jang, J.; Dolzhnikov, D. S.; Liu, W. Y.; Nam, S.; Shim, M.; Talapin, D. V. Solution-processed transistors using colloidal nanocrystals with composition-matched molecular "solders": Approaching single crystal mobility. Nano Lett. 2015, 15, 6309–6317.

241

Kim, F.; Kwon, B.; Eom, Y.; Lee, J. E.; Park, S.; Jo, S.; Park, S. H.; Kim, B. S.; Im, H. J.; Lee, M. H. et al. 3D printing of shape-conformable thermoelectric materials using all-inorganic Bi2Te3-based inks. Nat. Energy 2018, 3, 301–309.

Nano Research
Pages 1750-1769
Cite this article:
Min Y, Im E, Hwang G-T, et al. Heterostructures in two-dimensional colloidal metal chalcogenides: Synthetic fundamentals and applications. Nano Research, 2019, 12(8): 1750-1769. https://doi.org/10.1007/s12274-019-2432-6
Topics:

973

Views

34

Crossref

N/A

Web of Science

37

Scopus

0

CSCD

Altmetrics

Received: 26 March 2019
Revised: 06 May 2019
Accepted: 08 May 2019
Published: 21 May 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return