AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A laser ablated graphene-based flexible self-powered pressure sensor for human gestures and finger pulse monitoring

Partha Sarati Das§Ashok Chhetry§Pukar MaharjanM. Salauddin RaselJae Yeong Park( )
Micro/Nano Devices & Packaging Lab., Dept. of Electronic Engineering,Kwangwoon University,Seoul,01897,Republic of Korea;

§ Partha Sarati Das and Ashok Chhetry contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Flexible triboelectric nanogenerators (TENGs)-based pressure sensors are very essential for the wide-range applications, comprising wearable healthcare systems, intuitive human-device interfaces, electronic-skin (e-skin), and artificial intelligence. Most of conventional fabrication methods used to produce high-performance TENGs involve plasma treatment, photolithography, printing, and electro-deposition. However, these fabrication techniques are expensive, multi-step, time-consuming and not suitable for mass production, which are the main barriers for efficient and cost-effective commercialization of TENGs. Here, we established a highly reliable scheme for the fabrication of a novel eco-friendly, low cost, and TENG-based pressure sensor (TEPS) designed for usage in self-powered-human gesture detection (SP-HGD) likewise wearable healthcare applications. The sensors with microstructured electrodes performed well with high sensitivity (7.697 kPa−1), a lower limit of detection (~ 1 Pa), faster response time (< 9.9 ms), and highly stable over > 4, 000 compression–releasing cycles. The proposed method is suitable for the adaptable fabrication of TEPS at an extremely low cost with possible applications in self-powered systems, especially e-skin and healthcare applications.

Electronic Supplementary Material

Download File(s)
12274_2019_2433_MOESM1_ESM.pdf (1.6 MB)

References

1

Xia, K. L.; Wang, C. Y.; Jian, M. Q.; Wang, Q.; Zhang, Y. Y. CVD growth of fingerprint-like patterned 3D graphene film for an ultrasensitive pressure sensor. Nano Res. 2018, 11, 1124–1134.

2

Someya, T.; Sekitani, T.; Iba, S.; Kato, Y.; Kawaguchi, H.; Sakurai, T. A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proc. Natl. Acad. Sci. USA 2004, 101, 9966–9970.

3

Liu, Y.; Tao, L. Q.; Wang, D. Y.; Zhang, T. Y.; Yang, Y.; Ren, T. L. Flexible, highly sensitive pressure sensor with a wide range based on graphene-silk network structure. Appl. Phys. Lett. 2017, 110, 123508.

4

Chhetry, A.; Yoon, H.; Park, J. Y. A flexible and highly sensitive capacitive pressure sensor based on conductive fibers with a microporous dielectric for wearable electronics. J. Mater. Chem. C 2017, 5, 10068–10076.

5

Park, S. W.; Das, P. S; Park, J. Y. Development of wearable and flexible insole type capacitive pressure sensor for continuous gait signal analysis. Org. Electron. 2018, 53, 213–220.

6

Maiolino, P.; Maggiali, M.; Cannata, G.; Metta, G.; Natale, L. A flexible and robust large scale capacitive tactile system for robots. IEEE Sens. J. 2013, 13, 3910–3917.

7

Fuh, Y. K.; Wang, B. S.; Tsai, C. Y. Self-powered pressure sensor with fully encapsulated 3D printed wavy substrate and highly-aligned piezoelectric fibers array. Sci. Rep. 2017, 7, 6759.

8

Tian, H.; Shu, Y.; Wang, X. F.; Mohammad, M. A.; Bie, Z.; Xie, Q. Y.; Li, C.; Mi, W. T.; Yang, Y.; Ren, T. L. A graphene-based resistive pressure sensor with record-high sensitivity in a wide pressure range. Sci. Rep. 2015, 5, 8603.

9

Park, S. W.; Das, P. S.; Chhetry, A.; Park, J. Y. A flexible capacitive pressure sensor for wearable respiration monitoring system. IEEE Sens. J. 2017, 17, 6558–6564.

10

Mao, Y. C.; Geng, D. L.; Liang, E. J.; Wang, X. D. Single-electrode triboelectric nanogenerator for scavenging friction energy from rolling tires. Nano Energy 2015, 15, 227–234.

11

Sun, J. G.; Yang, T. N.; Kuo, I. S.; Wu, J. M.; Wang, C. Y.; Chen, L. J. A leaf-molded transparent triboelectric nanogenerator for smart multifunctional applications. Nano Energy 2017, 32, 180–186.

12

Dudem, B.; Kim, D. H.; Yu, J. S. Triboelectric nanogenerators with gold-thin-film-coated conductive textile as floating electrode for scavenging wind energy. Nano Res. 2018, 11, 101–113.

13

Mallineni, S. S. K.; Dong, Y. C.; Behlow, H.; Rao, A. M.; Podila, R. A wireless triboelectric nanogenerator. Adv. Energy Mater. 2018, 8, 1702736.

14

Fan, F. R.; Tian, Z. Q; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.

15

Zhu, G.; Yang, W. Q.; Zhang, T. J.; Jing, Q. S.; Chen, J.; Zhou, Y. S.; Bai, P.; Wang, Z. L. Self-powered, ultrasensitive, flexible tactile sensors based on contact electrification. Nano Lett. 2014, 14, 3208–3213.

16

Yi, F.; Lin, L.; Niu, S. M.; Yang, P. K.; Wang, Z. N.; Chen, J.; Zhou, Y. S.; Zi, Y. L.; Wang, J.; Liao, Q. L. et al. Stretchable-rubber-based triboelectric nanogenerator and its application as self-powered body motion sensors. Adv. Funct. Mater. 2015, 25, 3688–3696.

17

Niu, S. M.; Wang, Z. L. Theoretical systems of triboelectric nanogenerators. Nano Energy 2015, 14, 161–192.

18

Lee, K. Y.; Yoon, H. J.; Jiang, T.; Wen, X. N.; Seung, W.; Kim, S. W.; Wang, Z. L. Fully packaged self-powered triboelectric pressure sensor using hemispheres-array. Adv. Energy Mater. 2016, 6, 1502566.

19

Lim, G. H.; Kwak, S. S.; Kwon, N.; Kim, T.; Kim, H.; Kim, S. M.; Kim, S. W.; Lim, B. Fully stretchable and highly durable triboelectric nanogenerators based on gold-nanosheet electrodes for self-powered human-motion detection. Nano Energy 2017, 42, 300–306.

20

Cai, F.; Yi, C. R.; Liu, S. C.; Wang, Y.; Liu, L. C.; Liu, X. Q.; Xu, X. M.; Wang, L. Ultrasensitive, passive and wearable sensors for monitoring human muscle motion and physiological signals. Biosens. Bioelectron. 2016, 77, 907–913.

21

Zhang, L.; Jin, L.; Zhang, B. B.; Deng, W. L.; Pan, H.; Tang, J. F.; Zhu, M. H.; Yang, W. Q. Multifunctional triboelectric nanogenerator based on porous micro-nickel foam to harvest mechanical energy. Nano Energy 2015, 16, 516–523.

22

Pan, L.; Wang, J. Y.; Wang, P. H.; Gao, R. J.; Wang, Y. C.; Zhang, X. W.; Zou, J. J.; Wang, Z. L. Liquid-FEP-based U-tube triboelectric nanogenerator for harvesting water-wave energy. Nano Res. 2018, 11, 4062–4073.

23

Yang, P. K.; Lin, L.; Yi, F.; Li, X. H.; Pradel, K. C.; Zi, Y. L.; Wu, C. I.; He, J. H.; Zhang, Y.; Wang, Z. L. A flexible, stretchable and shape-adaptive approach for versatile energy conversion and self-powered biomedical monitoring. Adv. Mater. 2015, 27, 3817–3824.

24

Luo, J. J.; Fan, F. R.; Jiang, T.; Wang, Z. W.; Tang, W.; Zhang, C. P.; Liu, M. M.; Cao, G. Z.; Wang, Z. L. Integration of micro-supercapacitors with triboelectric nanogenerators for a flexible self-charging power unit. Nano Res. 2015, 8, 3934–3943.

25

Dhakar, L.; Pitchappa, P.; Tay, F. E. H.; Lee, C. An intelligent skin based self-powered finger motion sensor integrated with triboelectric nanogenerator. Nano Energy 2016, 19, 532–540.

26

Garcia, C.; Trendafilova, I.; De Villoria, R. G.; Del Rio, J. S. Self-powered pressure sensor based on the triboelectric effect and its analysis using dynamic mechanical analysis. Nano Energy 2018, 50, 401–409.

27

Hwang, B. U.; Lee, J. H.; Trung, T. Q.; Roh, E.; Kim, D. I.; Kim, S. W.; Lee, N. E. Transparent stretchable self-powered patchable sensor platform with ultrasensitive recognition of human activities. ACS Nano 2015, 9, 8801–8810.

28

Yu, L. H.; Yi, Y. Y.; Yao, T.; Song, Y. Z.; Chen, Y. R.; Li, Q. C.; Xia, Z.; Wei, N.; Tian, Z. N.; Nie, B. Q. et al. All VN-graphene architecture derived self-powered wearable sensors for ultrasensitive health monitoring. Nano Res. 2019, 12, 331–338.

29

Choi, A. Y.; Lee, C. J.; Park, J.; Kim, D.; Kim, Y. T. Corrugated textile based triboelectric generator for wearable energy harvesting. Sci. Rep. 2017, 7, 45583.

30

Das, P. S.; Park, J. Y.; Kim, D. H. Vacuum filtered conductive nylon membrane-based flexible TENG for wearable electronics. Micro Nano Lett. 2017, 12, 697–700.

31

Das, P. S.; Park, J. Y. Human skin based flexible triboelectric nanogenerator using conductive elastomer and fabric films. Electron. Lett. 2016, 52, 1885–1887.

32

Fan, F. R.; Lin, L.; Zhu, G.; Wu, W. Z.; Zhang, R.; Wang, Z. L. Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett. 2012, 12, 3109–3114.

33

Ma, M. Y.; Zhang, Z.; Liao, Q. L.; Yi, F.; Han, L. H.; Zhang, G. J.; Liu, S.; Liao, X. Q.; Zhang, Y. Self-powered artificial electronic skin for high-resolution pressure sensing. Nano Energy 2017, 32, 389–396.

34

Cheng, J. Y.; Sundholm, M.; Zhou, B.; Hirsch, M.; Lukowicz, P. Smart-surface: Large scale textile pressure sensors arrays for activity recognition. Pervasive Mob. Comput. 2016, 30, 97–112.

35

Ai, Y. F.; Hsu, T. H.; Wu, D. C.; Lee, L.; Chen, J. H.; Chen, Y. Z.; Wu, S. C.; Wu, C.; Wang, Z. M.; Chueh, Y. L. An ultrasensitive flexible pressure sensor for multimodal wearable electronic skins based on large-scale polystyrene ball@reduced graphene-oxide core–shell nanoparticles. J. Mater. Chem. C 2018, 6, 5514–5520.

36

Dhakar, L.; Gudla, S.; Shan, X. C.; Wang, Z. P.; Tay, F. E. H.; Heng, C. H.; Lee, C. Large scale triboelectric nanogenerator and self-powered pressure sensor array using low cost roll-to-roll UV embossing. Sci. Rep. 2016, 6, 22253.

37

Rasel, M. S.; Maharjan, P.; Salauddin, M.; Rahman, M. T.; Cho, H. O.; Kim, J. W.; Park, J. Y. An impedance tunable and highly efficient triboelectric nanogenerator for large-scale, ultra-sensitive pressure sensing applications. Nano Energy 2018, 49, 603–613.

38

Li, Y. Q.; Huang, P.; Zhu, W. B.; Fu, S. Y.; Hu, N.; Liao, K. Flexible wire-shaped strain sensor from cotton thread for human health and motion detection. Sci. Rep. 2017, 7, 45013.

39

Lee, C. J.; Choi, A. Y.; Choi, C.; Sim, H. J.; Kim, S. J.; Kim, Y. T. Triboelectric generator for wearable devices fabricated using a casting method. RSC Adv. 2016, 6, 10094–10098.

40

Cui, S. W.; Zheng, Y. B.; Liang, J.; Wang, D. A. Triboelectrification based on double-layered polyaniline nanofibers for self-powered cathodic protection driven by wind. Nano Res. 2018, 11, 1873–1882.

41

Jin, L. M.; Tao, J.; Bao, R. R.; Sun, L.; Pan, C. F. Self-powered real-time movement monitoring sensor using triboelectric nanogenerator technology. Sci. Rep. 2017, 7, 10521.

42

Pu, X.; Liu, M. M.; Chen, X. Y.; Sun, J. M.; Du, C. H.; Zhang, Y.; Zhai, J. Y.; Hu, W. G.; Wang, Z. L. Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing. Sci. Adv. 2017, 3, e1700015.

43

Karagozler, M. E.; Poupyrev, I; Fedder, G. K.; Suzuki, Y. Paper generators: Harvesting energy from touching, rubbing and sliding. In Proceedings of the 26th Annual ACM Symposium on User Interface Software and Technology, St. Andrews, Scotland, UK, 2013, pp 23–30.

44

Rasel, M. S. U.; Park, J. Y. A sandpaper assisted micro-structured polydimethylsiloxane fabrication for human skin based triboelectric energy harvesting application. Appl. Energy 2017, 206, 150–158.

45

Lamberti, A.; Clerici, F.; Fontana, M.; Scaltrito, L. A highly stretchable supercapacitor using laser-induced graphene electrodes onto elastomeric substrate. Adv. Energy Mater. 2016, 6, 1600050.

46

Lin, S. Y.; Feng, W. D.; Miao, X. F.; Zhang, X. X.; Chen, S. J.; Chen, Y. Q.; Wang, W.; Zhang, Y. N. A flexible and highly sensitive nonenzymatic glucose sensor based on DVD-laser scribed graphene substrate. Biosens. Bioelectron. 2018, 110, 89–96.

47

Lin, J.; Peng, Z. W.; Liu, Y. Y.; Ruiz-Zepeda, F.; Ye, R. Q.; Samuel, E. L. G.; Yacaman, M. J.; Yakobson, B. I.; Tour, J. M. Laser-induced porous graphene films from commercial polymers. Nat. Commun. 2014, 5, 5714.

48

R-CHEK surface resistivity meters [Online]. https://www.edtm.com/images/stories/pdf/manuals/r-chek_manual.pdf. (accessed Feb 4, 2019).

49

Lee, S.; Reuveny, A.; Reeder, J.; Lee, S.; Jin, H.; Liu, Q. H.; Yokota, T.; Sekitani, T.; Isoyama, T.; Abe, Y. et al. A transparent bending-insensitive pressure sensor. Nat. Nanotechnol. 2016, 11, 472–478.

50

Gong, S.; Schwalb, W.; Wang, Y. W.; Chen, Y.; Tang, Y.; Si, J.; Shirinzadeh, B.; Cheng, W. L. A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat. Commun. 2014, 5, 3132.

51

Huang, Z. L.; Gao, M.; Yan, Z. C.; Pan, T. S.; Khan, S. A.; Zhang, Y.; Zhang, H. L.; Lin, Y. Pyramid microstructure with single walled carbon nanotubes for flexible and transparent micro-pressure sensor with ultra-high sensitivity. Sens. Actuators A: Phys. 2017, 266, 345–351.

52

Kwak, Y. H.; Kim, W.; Park, K. B.; Kim, K.; Seo, S. Flexible heartbeat sensor for wearable device. Biosens. Bioelectron. 2017, 94, 250–255.

53

Lipomi, D. J.; Vosgueritchian, M.; Tee, B. C. K.; Hellstrom, S. L.; Lee, J. A.; Fox, C. H.; Bao, Z. N. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat. Nanotechnol. 2011, 6, 788–792.

54

Zhou, C. J.; Yang, Y. Q.; Sun, N.; Wen, Z.; Cheng, P.; Xie, X. K.; Shao, H. Y.; Shen, Q. Q.; Chen, X. P.; Liu, Y. N. et al. Flexible self-charging power units for portable electronics based on folded carbon paper. Nano Res. 2018, 11, 4313–4322.

55

Wang, F.; Liu, S.; Shu, L.; Tao, X. M. Low-dimensional carbon based sensors and sensing network for wearable health and environmental monitoring. Carbon 2017, 121, 353–367.

56

Xuan, X.; Kim, J. Y.; Hui, X.; Das, P. S.; Yoon, H. S.; Park, J. Y. A highly stretchable and conductive 3D porous graphene metal nanocomposite based electrochemical-physiological hybrid biosensor. Biosens. Bioelectron. 2018, 120, 160–167.

57

Pang, Y.; Jian, J. M.; Tu, T.; Yang, Z.; Ling, J.; Li, Y. X.; Wang, X. F.; Qiao, Y. C.; Tian, H.; Yang, Y. et al. Wearable humidity sensor based on porous graphene network for respiration monitoring. Biosens. Bioelectron. 2018, 116, 123–129.

58

Tee, B. C. K.; Chortos, A.; Dunn, R. R.; Schwartz, G.; Eason, E.; Bao, Z. N. Tunable flexible pressure sensors using microstructured elastomer geometries for intuitive electronics. Adv. Funct. Mater. 2014, 24, 5427–5434.

59

Yao, H. B.; Ge, J.; Wang, C. F.; Wang, X.; Hu, W.; Zheng, Z. J.; Ni, Y.; Yu, S. H. A flexible and highly pressure-sensitive graphene–polyurethane sponge based on fractured microstructure design. Adv. Mater. 2013, 25, 6692–6698.

60

Wu, X. D.; Han, Y. Y.; Zhang, X. X.; Zhou, Z. H.; Lu, C. H. Large-area compliant, low-cost, and versatile pressure-sensing platform based on microcrack-designed carbon black@polyurethane sponge for human–machine interfacing. Adv. Funct. Mater. 2016, 26, 6246–6256.

61

Parida, K.; Bhavanasi, V.; Kumar, V.; Bendi, R.; Lee, P. S. Self-powered pressure sensor for ultra-wide range pressure detection. Nano Res. 2017, 10, 3557–3570.

62

Chun, S.; Kim, Y.; Oh, H. S.; Bae, G.; Park, W. A highly sensitive pressure sensor using a double-layered graphene structure for tactile sensing. Nanoscale 2015, 7, 11652–11659.

63

Wang, X. L.; Li, T. J.; Adams, J.; Yang, J. Transparent, stretchable, carbon-nanotube-inlaid conductors enabled by standard replication technology for capacitive pressure, strain and touch sensors. J. Mater. Chem. A 2013, 1, 3580–3586.

64

Cao, R.; Wang, J. N.; Zhao, S. Y.; Yang, W.; Yuan, Z. Q.; Yin, Y. Y.; Du, X. Y.; Li, N. W.; Zhang, X. L.; Li, X. Y. et al. Self-powered nanofiber-based screen-print triboelectric sensors for respiratory monitoring. Nano Res. 2018, 11, 3771–3779.

65

Signal display processing [Online]. https://processing.org/download/ (accessed Feb 3, 2019).

Nano Research
Pages 1789-1795
Cite this article:
Das PS, Chhetry A, Maharjan P, et al. A laser ablated graphene-based flexible self-powered pressure sensor for human gestures and finger pulse monitoring. Nano Research, 2019, 12(8): 1789-1795. https://doi.org/10.1007/s12274-019-2433-5
Topics:

790

Views

84

Crossref

N/A

Web of Science

84

Scopus

0

CSCD

Altmetrics

Received: 25 January 2019
Revised: 06 May 2019
Accepted: 10 May 2019
Published: 30 May 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return