Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Amorphous indium–gallium–zinc oxide (a-IGZO) materials have been widely explored for various thin-film transistor (TFT) applications; however, their device performance is still restricted by the intrinsic material issues especially due to their non-crystalline nature. In this study, highly crystalline superlattice-structured IGZO nanowires (NWs) with different Ga concentration are successfully fabricated by enhanced ambient-pressure chemical vapor deposition (CVD). The unique superlattice structure together with the optimal Ga concentration (i.e., 31 at.%) are found to effectively modulate the carrier concentration as well as efficiently suppress the oxygen vacancy formation for the superior NW device performance. In specific, the In1.8Ga1.8Zn2.4O7 NW field-effect transistor exhibit impressive device characteristics with the average electron mobility of ~ 110 cm2·V−1·s−1 and on/off current ratio of ~ 106. Importantly, these NWs can also be integrated into NW parallel arrays for the construction of high-performance TFT devices, in which their performance is comparable to many state-of-the-art IGZO TFTs. All these results can evidently indicate the promising potential of these crystalline superlattice-structured IGZO NWs for the practical utilization in next-generation metal-oxide TFT device technologies.
Nomura, K.; Takagi, A.; Kamiya, T.; Ohta, H.; Hirano, M.; Hosono, H. Amorphous oxide semiconductors for high-performance flexible thin-film transistors. Jpn. J. Appl. Phys. 2006, 45, 4303.
Liu, X.; Hu, H. H.; Ning, C.; Shang, G. L.; Yang, W.; Wang, K.; Lu, X. H.; Lee, W.; Wang, G.; Xue, J. S. et al. Investigation into sand mura effects of a-IGZO TFT LCDs. Microelectron. Reliab. 2016, 63, 148–151.
Oh, H.; Cho, K.; Park, S.; Kim, S. Electrical characteristics of bendable a-IGZO thin-film transistors with split channels and top-gate structure. Microelectron. Eng. 2016, 159, 179–183.
Wu, G. M.; Sahoo, A. K.; Lin, J. Y. Effects of e-beam deposited gate dielectric layers with atmospheric pressure plasma treatment for IGZO thin-film transistors. Surf. Coat. Technol. 2016, 306, 151–158.
Lin, J. C.; Huang, B. R.; Yang, Y. K. IGZO nanoparticle-modified silicon nanowires as extended-gate field-effect transistor pH sensors. Sens. Actuators, B: Chem. 2013, 184, 27–32.
Seo, D. K.; Shin, S.; Cho, H. H.; Kong, B. H.; Whang, D. M.; Cho, H. K. Drastic improvement of oxide thermoelectric performance using thermal and plasma treatments of the InGaZnO thin films grown by sputtering. Acta Mater. 2011, 59, 6743–6750.
Andrews, S. C.; Fardy, M. A.; Moore, M. C.; Aloni, S.; Zhang, M. J.; Radmilovic, V.; Yang, P. D. Atomic-level control of the thermoelectric properties in polytypoid nanowires. Chem. Sci. 2011, 2, 706–714.
Zhou, H. T.; Li, L.; Chen, H. Y.; Guo, Z.; Jiao, S. J.; Sun, W. J. Realization of a fast-response flexible ultraviolet photodetector employing a metal- semiconductor-metal structure InGaZnO photodiode. RSC Adv. 2015, 5, 87993–87997.
Tsao, S. W.; Chang, T. C.; Huang, S. Y.; Chen, M. C.; Chen, S. C.; Tsai, C. T.; Kuo, Y. J.; Chen, Y. C.; Wu, W. C. Hydrogen-induced improvements in electrical characteristics of a-IGZO thin-film transistors. Solid-State Electron. 2010, 54, 1497–1499.
Chiu, C. J.; Chang, S. P.; Chang, S. J. High-performance a-IGZO thin-film transistor using Ta2O5 gate dielectric. IEEE Electron Device Lett. 2010, 31, 1245–1247.
Chen, H. T.; Cao, Y.; Zhang, J. L.; Zhou, C. W. Large-scale complementary macroelectronics using hybrid integration of carbon nanotubes and IGZO thin-film transistors. Nat. Commun. 2014, 5, 4097.
Nomura, K.; Ohta, H.; Takagi, A.; Kamiya, T.; Hirano, M.; Hosono, H. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 2004, 432, 488–492.
Wang, Y.; Liu, S. W.; Sun, X. W.; Zhao, J. L.; Goh, G. K. L.; Vu, Q. V.; Yu, H. Y. Highly transparent solution processed In-Ga-Zn oxide thin films and thin film transistors. J. Sol-Gel Sci. Technol. 2010, 55, 322–327.
Nomura, K.; Ohta, H.; Ueda, K.; Kamiya, T.; Hirano, M.; Hosono, H. Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor. Science 2003, 300, 1269–1272.
Nomura, K.; Ohta, H.; Ueda, K.; Kamiya, T.; Orita, M.; Hirano, M.; Suzuki, T.; Honjyo, C.; Ikuhara, Y.; Hosono, H. Growth mechanism for single-crystalline thin film of InGaO3(ZnO)5 by reactive solid-phase epitaxy. J. Appl. Phys. 2004, 95, 5532–5539.
Ohta, H.; Nomura, K.; Orita, M.; Hirano, M.; Ueda, K.; Suzuki, T.; Ikuhara, Y.; Hosono, H. Single-crystalline films of the homologous series InGaO3(ZnO)m grown by reactive solid-phase epitaxy. Adv. Funct. Mater. 2003, 13, 139–144.
Nomura, K.; Kamiya, T.; Ohta, H.; Ueda, K.; Hirano, M.; Hosono, H. Carrier transport in transparent oxide semiconductor with intrinsic structural randomness probed using single-crystalline InGaO3(ZnO)5 films. Appl. Phys. Lett. 2004, 85, 1993–1995.
Chen, H. G.; Lin, Y. S. Epitaxial growth of superlattice YbGaO3(ZnO)5 and InGaO3(ZnO)5 films by the combination of sputtering and reactive solid phase epitaxy. Thin Solid Films 2013, 545, 33–37.
Guo, Y. J.; Van Bart, B.; Locquet, J. P.; Seo, J. W. Formation of crystalline InGaO3(ZnO)n nanowires via the solid-phase diffusion process using a solution-based precursor. Nanotechnology 2015, 26, 495601.
Wu, L. L.; Liu, F. W.; Chu, Z. Q.; Liang, Y.; Xu, H. Y.; Lu, H. Q.; Zhang, X. T.; Li, Q.; Hark, S. K. High-yield synthesis of In2–xGaxO3(ZnO)3 nanobelts with a planar superlattice structure. CrystEngComm 2010, 12, 2047–2050.
Jayaswal, N.; Raman, A.; Kumar, N.; Singh, S. Design and analysis of electrostatic-charge plasma based dopingless IGZO vertical nanowire FET for ammonia gas sensing. Superlattices Microstruct. 2019, 125, 256–270.
Felizco, J. C.; Uenuma, M.; Senaha, D.; Ishikawa, Y.; Uraoka, Y. Growth of InGaZnO nanowires via a Mo/Au catalyst from amorphous thin film. Appl. Phys. Lett. 2017, 111, 033104.
Li, D. P.; Wang, G. Z.; Yang, Q. H.; Xie, X. Synthesis and photoluminescence of InGaO3(ZnO)m nanowires with perfect superlattice structure. J. Phys. Chem. C 2009, 113, 21512–21515.
Han, N.; Yang, Z. X.; Wang, F. Y.; Yip, S.; Dong, G. F.; Liang, X. G.; Hung, T.; Chen, Y. F.; Ho, J. C. Modulating the morphology and electrical properties of GaAs nanowires via catalyst stabilization by oxygen. ACS Appl. Mater. Interfaces 2015, 7, 5591–5597.
Han, N.; Wang, F. Y.; Yip, S.; Hou, J. J.; Xiu, F.; Shi, X. L.; Hui, A. T.; Hung, T.; Ho, J. C. GaAs nanowire Schottky barrier photovoltaics utilizing Au–Ga alloy catalytic tips. Appl. Phys. Lett. 2012, 101, 013105.
Fang, M.; Han, N.; Wang, F. Y.; Yang, Z. X.; Yip, S.; Dong, G. F.; Hou, J. J.; Chueh, Y.; Ho, J. C. Ⅲ-Ⅴ nanowires: Synthesis, property manipulations, and device applications. J. Nanomater. 2014, 2014, 702859.
Hui, A. T.; Wang, F. Y.; Han, N.; Yip, S.; Xiu, F.; Hou, J. J.; Yen, Y. T.; Hung, T.; Chueh, Y. L.; Ho, J. C. High-performance indium phosphide nanowires synthesized on amorphous substrates: From formation mechanism to optical and electrical transport measurements. J. Mater. Chem. 2012, 22, 10704–10708.
Johnson, M. C.; Aloni, S.; McCready, D. E.; Bourret-Courchesne, E. D. Controlled vapor−liquid−solid growth of indium, gallium, and tin oxide nanowires via chemical vapor transport. Cryst. Growth Des. 2006, 6, 1936–1941.
Vomiero, A.; Ferroni, M.; Comini, E.; Faglia, G.; Sberveglieri, G. Insight into the formation mechanism of one-dimensional indium oxide wires. Cryst. Growth Des. 2010, 10, 140–145.
Na, C. W.; Bae, S. Y.; Park, J. Short-period superlattice structure of Sn-doped In2O3(ZnO)4 and In2O3(ZnO)5 nanowires. J. Phys. Chem. B 2005, 109, 12785–12790.
Wu, L. L.; Liang, Y.; Liu, F. W.; Lu, H. Q.; Xu, H. Y.; Zhang, X. T.; Hark, S. Preparation of ZnO/In2O3(ZnO)n heterostructure nanobelts. CrystEngComm 2010, 12, 4152–4155.
Jie, J. S.; Wang, G. Z.; Han, X. H.; Hou, J. G. Synthesis and characterization of ZnO: In nanowires with superlattice structure. J. Phys. Chem. B 2004, 108, 17027–17031.
Huang, D. L.; Wu, L. L.; Zhang, X. T. Size-dependent InAlO3(ZnO)m nanowires with a perfect superlattice structure. J. Phys. Chem. C 2010, 114, 11783–11786.
Cho, S. W.; Kim, J. H.; Shin, S.; Cho, H. H.; Cho, H. K. All-solution- processed InGaO3(ZnO)m thin films with layered structure. J. Nanomater. 2013, 2013, 909786.
Seo, D. K.; Kong, B. H.; Cho, H. K. Composition controlled superlattice InGaO3(ZnO)m thin films by thickness of ZnO buffer layers and thermal treatment. Cryst. Growth Des. 2010, 10, 4638–4641.
Kamiya, T.; Takeda, Y.; Nomura, K.; Ohta, H.; Yanagi, H.; Hirano, M.; Hosono, H. Self-adjusted, three-dimensional lattice-matched buffer layer for growing ZnO epitaxial film: Homologous series layered oxide, InGaO3(ZnO)5. Cryst. Growth Des. 2006, 6, 2451–2456.
Wu, L. L.; Li, Q.; Zhang, X. T.; Zhai, T. Y.; Bando, Y.; Golberg, D. Enhanced field emission performance of Ga-doped In2O3(ZnO)3 superlattice nanobelts. J. Phys. Chem. C 2011, 115, 24564–24568.
Keem, K.; Jeong, D. Y.; Kim, S.; Lee, M. S.; Yeo, I. S.; Chung, U. I.; Moon, J. T. Fabrication and device characterization of omega-shaped-gate ZnO nanowire field-effect transistors. Nano Lett. 2006, 6, 1454–1458.
Yang, Z. X.; Wang, F. Y.; Han, N.; Lin, H.; Cheung, H. Y.; Fang, M.; Yip, S.; Hung, T.; Wong, C. Y.; Ho, J. C. Crystalline GaSb nanowires synthesized on amorphous substrates: From the formation mechanism to p-channel transistor applications. ACS Appl. Mater. Interfaces 2013, 5, 10946–10952.
Yang, Z. X.; Han, N.; Fang, M.; Lin, H.; Cheung, H. Y.; Yip, S.; Wang, E. J.; Hung, T.; Wong, C. Y.; Ho, J. C. Surfactant-assisted chemical vapour deposition of high-performance small-diameter GaSb nanowires. Nat. Commun. 2014, 5, 5249.
Yang, Z. X.; Yip, S.; Li, D. P.; Han, N.; Dong, G. F.; Liang, X. G.; Shu, L.; Hung, T. F.; Mo, X. L.; Ho, J. C. Approaching the hole mobility limit of GaSb nanowires. ACS Nano 2015, 9, 9268–9275.
Li, W. Q.; Liao, L.; Xiao, X. H.; Zhao, X. Y.; Dai, Z. G.; Guo, S. S.; Wu, W.; Shi, Y.; Xu, J. X.; Ren, F. et al. Modulating the threshold voltage of oxide nanowire field-effect transistors by a Ga+ ion beam. Nano Res. 2014, 7, 1691–1698.
Rao, C. N. R.; Kulkarni, G. U.; Thomas, P. J.; Edwards, P. P. Size-dependent chemistry: Properties of nanocrystals. Chem. Eur. J. 2002, 8, 28–35.
Volokitin, Y.; Sinzig, J.; De Jongh, L. J.; Schmid, G.; Vargaftik, M. N.; Moiseevi, I. I. Quantum-size effects in the thermodynamic properties of metallic nanoparticles. Nature 1996, 384, 621–623.
Park, G. C.; Hwang, S. M.; Choi, J. H.; Kwon, Y. H.; Cho, H. K.; Kim, S. W.; Lim, J. H.; Joo, J. Effects of In or Ga doping on the growth behavior and optical properties of ZnO nanorods fabricated by hydrothermal process. Phys. Status Solidi A 2013, 210, 1552–1556.
Li, T. C.; Han, C. F.; Kuan, T. H.; Lin, J. F. Effects of sputtering-deposition inclination angle on the IGZO film microstructures, optical properties and photoluminescence. Opt. Mater. Express 2016, 6, 343–366.
Kamiya, T.; Hosono, H. Material characteristics and applications of transparent amorphous oxide semiconductors. NPG Asia Mater. 2010, 2, 15–22.
Jeong, S.; Ha, Y. G.; Moon, J.; Facchetti, A.; Marks, T. J. Role of gallium doping in dramatically lowering amorphous-oxide processing temperatures for solution-derived indium zinc oxide thin-film transistors. Adv. Mater. 2010, 22, 1346–1350.
Zhou, Z. Y.; Lan, C. Y.; Yip, S.; Wei, R. J.; Li, D. P.; Shu, L.; Ho, J. C. Towards high-mobility In2xGa2–2xO3 nanowire field-effect transistors. Nano Res. 2018, 11, 5935–5945.
Parthiban, S.; Kwon, J. Y. Role of dopants as a carrier suppressor and strong oxygen binder in amorphous indium-oxide-based field effect transistor. J. Mater. Res. 2014, 29, 1585–1596.
Lei, B.; Li, C.; Zhang, D.; Tang, T.; Zhou, C. Tuning electronic properties of In2O3 nanowires by doping control. Appl. Phys. A 2004, 79, 439–442.
Zhang, D. H.; Ma, H. L. Scattering mechanisms of charge carriers in transparent conducting oxide films. Appl. Phys. A 1996, 62, 487–492.
Hou, J. J.; Han, N.; Wang, F. Y.; Xiu, F.; Yip, S.; Hui, A. T.; Hung, T.; Ho, J. C. Synthesis and characterizations of ternary InGaAs nanowires by a two-step growth method for high-performance electronic devices. ACS Nano 2012, 6, 3624–3630.
Han, N.; Wang, F. Y.; Hui, A. T; Hou, J. J.; Shan, G. C.; Xiu, F.; Hung, T.; Ho, J. C. Facile synthesis and growth mechanism of Ni-catalyzed GaAs nanowires on non-crystalline substrates. Nanotechnology 2011, 22, 285607.
Han, N.; Hui, A. T.; Wang, F. Y.; Hou, J. J.; Xiu, F.; Hung, T.; Ho, J. C. Crystal phase and growth orientation dependence of GaAs nanowires on NixGay seeds via vapor-solid-solid mechanism. Appl. Phys. Lett. 2011, 99, 083114.
Zou, X. M.; Liu, X. Q.; Wang, C. L.; Jiang, Y.; Wang, Y.; Xiao, X. H.; Ho, J. C.; Li, J. C.; Jiang, C. Z.; Xiong, Q. H. et al. Controllable electrical properties of metal-doped In2O3 nanowires for high-performance enhancement-mode transistors. ACS Nano 2013, 7, 804–810.