Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
CuInS2 semiconductor nanocrystals (NCs) exhibit large absorption coefficient, size-dependent photoluminescence and low toxicity, making them excellent candidates in a variety of bioapplications. However, precise control of both their composition and morphology to improve the luminescent efficiency remains a great challenge via conventional direct synthesis. Herein, we present a novel low-temperature template synthesis of highly efficient luminescent CuInS2 nanoprobes from In2S3 NCs via a facile cation exchange strategy. The proposed strategy enables synthesis of a series of CuInS2 NCs with broad size tunability from 2.2 to 29.6 nm. Through rationally manipulating the stoichiometry of Cu/In, highly efficient luminescence of CuInS2 with the maximum quantum yield of 28.6% has been achieved, which is about one order of magnitude improvement relative to that of directly synthesized NCs. By virtue of the intense emission of CuInS2 nanoprobes, we exemplify their application in sensitive homogeneous biodetection for an important biomolecule of adenosine triphosphate (ATP) with the limit of detection down to 49.3 nM. Moreover, the CuInS2 nanoprobes are explored for ATP-targeted cancer cell imaging, thus revealing their great potentials in the field of cancer diagnosis and prognosis.
Jamieson, T.; Bakhshi, R.; Petrova, D.; Pocock, R.; Imani, M.; Seifalian, A. M. Biological applications of quantum dots. Biomaterials 2007, 28, 4717-4732.
Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005, 307, 538-544.
Senger, R. T.; Bajaj, K. K. Optical properties of confined polaronic excitons in spherical ionic quantum dots. Phys. Rev. B 2003, 68, 045313.
Zhang, Y.; Hong, G. S.; Zhang, Y. J.; Chen, G. C.; Li, F.; Dai, H. J.; Wang, Q. B. Ag2S quantum dot: A bright and biocompatible fluorescent nanoprobe in the second near-infrared window. ACS Nano 2012, 6, 3695-3702.
Du, Y. P.; Xu, B.; Fu, T.; Cai, M.; Li, F.; Zhang, Y.; Wang, Q. B. Near-infrared photoluminescent Ag2S quantum dots from a single source precursor. J. Am. Chem. Soc. 2010, 132, 1470-1471.
Jang, Y.; Shapiro, A.; Isarov, M.; Rubin-Brusilovski, A.; Safran, A.; Budniak, A. K.; Horani, F.; Dehnel, J.; Sashchiuk, A.; Lifshitz, E. Interface control of electronic and optical properties in IV-VI and Ⅱ-VI core/shell colloidal quantum dots: A review. Chem. Commun. 2017, 53, 1002-1024.
Shao, M.; Zhang, R.; Wang, C.; Hu, B.; Pang, D. W.; Xie, Z. X. Living cell synthesis of CdSe quantum dots: Manipulation based on the transformation mechanism of intracellular Se-precursors. Nano Res. 2018, 11, 2498-2511.
Tanaka, M. Photoluminescence properties of Mn2+-doped Ⅱ-VI semiconductor nanocrystals. J. Lumin. 2002, 100, 163-173.
Xia, X.; Liu, Z. L.; Du, G. H.; Li, Y. B.; Ma, M. Wurtzite and zinc-blende CdSe based core/shell semiconductor nanocrystals: Structure, morphology and photoluminescence. J. Lumin. 2010, 130, 1285-1291.
Kolny-Olesiak, J.; Weller, H. Synthesis and application of colloidal CuInS2 semiconductor nanocrystals. ACS Appl. Mater. Interfaces 2013, 5, 12221-12237.
Reiss, P.; Carrière, M.; Lincheneau, C.; Vaure, L.; Tamang, S. Synthesis of semiconductor nanocrystals, focusing on nontoxic and earth-abundant materials. Chem. Rev. 2016, 116, 10731-10819.
Liu, X. Y.; Zhang, G. Z.; Chen, H.; Li, H. W.; Jiang, J.; Long, Y. T.; Ning, Z. J. Efficient defect-controlled photocatalytic hydrogen generation based on near-infrared Cu-In-Zn-S quantum dots. Nano Res. 2018, 11, 1379-1388.
Zhong, H. Z.; Zhou, Y.; Ye, M. F.; He, Y. J.; Ye, J. P.; He, C.; Yang, C. H.; Li, Y. F. Controlled synthesis and optical properties of colloidal ternary chalcogenide CuInS2 nanocrystals. Chem. Mater. 2008, 20, 6434-6443.
Berends, A. C.; Mangnus, M. J. J.; Xia, C. H.; Rabouw, F. T.; de Mello Donega, C. Optoelectronic properties of ternary I-Ⅲ-VI2 semiconductor nanocrystals: Bright prospects with elusive origins. J. Phys. Chem. Lett. 2019, 10, 1600-1616.
Chen, B. K.; Pradhan, N.; Zhong, H. Z. From large-scale synthesis to lighting device applications of ternary I-Ⅲ-VI semiconductor nanocrystals: Inspiring greener material emitters. J. Phys. Chem. Lett. 2018, 9, 435-445.
van der Stam, W.; Bladt, E.; Rabouw, F. T.; Bals, S.; de Mello Donega, C. Near-infrared emitting CuInSe2/CuInS2 dot core/rod shell heteronanorods by sequential cation exchange. ACS Nano 2015, 9, 11430-11438.
Hughes, K. E.; Ostheller, S. R.; Nelson, H. D.; Gamelin, D. R. Copper's role in the photoluminescence of Ag1-xCuxInS2 nanocrystals, from copper-doped AgInS2 (x ~ 0) to CuInS2 (x = 1). Nano Lett. 2019, 19, 1318-1325.
Chen, B. K.; Zhong, H. Z.; Zhang, W. Q.; Tan, Z. A.; Li, Y. F.; Yu, C. R.; Zhai, T. Y.; Bando, Y.; Yang, S. Y.; Zou, B. S. Highly emissive and color- tunable CuInS2-based colloidal semiconductor nanocrystals: Off-stoichiometry effects and improved electroluminescence performance. Adv. Funct. Mater. 2012, 22, 2081-2088.
Pan, D. C.; An, L. J.; Sun, Z. M.; Hou, W.; Yang, Y.; Yang, Z. Z.; Lu, Y. F. Synthesis of Cu-In-S ternary nanocrystals with tunable structure and composition. J. Am. Chem. Soc. 2008, 130, 5620-5621.
Gromova, M.; Lefrançois, A.; Vaure, L.; Agnese, F.; Aldakov, D.; Maurice, A.; Djurado, D.; Lebrun, C.; de Geyer, A.; Schülli, T. U. et al. Growth mechanism and surface state of CuInS2 nanocrystals synthesized with dodecanethiol. J. Am. Chem. Soc. 2017, 139, 15748-15759.
Chen, B. K.; Chang, S.; Li, D. Y.; Chen, L. L.; Wang, Y. T.; Chen, T.; Zou, B. S.; Zhong, H. Z.; Rogach, A. L. Template synthesis of CuInS2 nanocrystals from In2S3 nanoplates and their application as counter electrodes in dye-sensitized solar cells. Chem. Mater. 2015, 27, 5949-5956.
Xia, C. H.; Wu, W. W.; Yu, T.; Xie, X. B.; van Oversteeg, C.; Gerritsen, H. C.; de Mello Donega, C. Size-dependent band-gap and molar absorption coefficients of colloidal CuInS2 quantum dots. ACS Nano 2018, 12, 8350-8361.
Zhang, W. J.; Zhong, X. H. Facile synthesis of ZnS-CuInS2-alloyed nanocrystals for a color-tunable fluorchrome and photocatalyst. Inorg. Chem. 2011, 50, 4065-4072.
Akkerman, Q. A.; Genovese, A.; George, C.; Prato, M.; Moreels, I.; Casu, A.; Marras, S.; Curcio, A.; Scarpellini, A.; Pellegrino, T. et al. From binary Cu2S to ternary Cu-In-S and quaternary Cu-In-Zn-S nanocrystals with tunable composition via partial cation exchange. ACS Nano 2015, 9, 521-531.
van der Stam, W.; Berends, A. C.; Rabouw, F. T.; Willhammar, T.; Ke, X. X.; Meeldijk, J. D.; Bals, S.; de Mello Donega, C. Luminescent CuInS2 quantum dots by partial cation exchange in Cu2-xS nanocrystals. Chem. Mater. 2015, 27, 621-628.
Xia, C. H.; Winckelmans, N.; Prins, P. T.; Bals, S.; Gerritsen, H. C.; de Mello Donegá, C. Near-infrared-emitting CuInS2/ZnS dot-in-rod colloidal heteronanorods by seeded growth. J. Am. Chem. Soc. 2018, 140, 5755-5763.
Migge, H.; Grzanna, J. Thermochemistry in the system Cu-In-S at 723 K. J. Mater. Res. 1994, 9, 125-131.
Xiang, W. D.; Yang, H. L.; Liang, X. J.; Zhong, J. S.; Wang, J.; Luo, L.; Xie, C. P. Direct synthesis of highly luminescent Cu-Zn-In-S quaternary nanocrystals with tunable photoluminescence spectra and decay times. J. Mater. Chem. C 2013, 1, 2014-2020.
Uehara, M.; Watanabe, K.; Tajiri, Y.; Nakamura, H.; Maeda, H. Synthesis of CuInS2 fluorescent nanocrystals and enhancement of fluorescence by controlling crystal defect. J. Chem. Phys. 2008, 129, 134709.
de Trizio, L.; Prato, M.; Genovese, A.; Casu, A.; Povia, M.; Simonutti, R.; Alcocer, M. J. P.; D'Andrea, C.; Tassone, F.; Manna, L. Strongly fluorescent quaternary Cu-In-Zn-S nanocrystals prepared from Cu1-xInS2 nanocrystals by partial cation exchange. Chem. Mater. 2012, 24, 2400-2406.
Kim, Y. K.; Ahn, S. H.; Chung, K.; Cho, Y. S.; Choi, C. J. The photoluminescence of CuInS2 nanocrystals: Effect of non-stoichiometry and surface modification. J. Mater. Chem. 2012, 22, 1516-1520.
Guan, W. J.; Zhou, W. J.; Lu, J.; Lu, C. Luminescent films for chemo- and biosensing. Chem. Soc. Rev. 2015, 44, 6981-7009.
Sun, M. Z.; Hao, T. T.; Li, X. Y.; Qu, A. H.; Xu, L. G.; Hao, C. L.; Xu, C. L.; Kuang, H. Direct observation of selective autophagy induction in cells and tissues by self-assembled chiral nanodevice. Nat. Commun. 2018, 9, 4494.
Hou, T.; Li, W.; Zhang, L. F.; Li, F. A versatile and highly sensitive homogeneous electrochemical strategy based on the split aptamer binding-induced DNA three-way junction and exonuclease Ⅲ-assisted target recycling. Analyst 2015, 140, 5748-5753.
Mo, R.; Jiang, T. Y.; DiSanto, R.; Tai, W. Y.; Gu, Z. ATP-triggered anticancer drug delivery. Nat. Commun. 2014, 5, 3364.
Hu, T. Y.; Na, W. D.; Yan, X.; Su, X. G. Sensitive fluorescence detection of ATP based on host-guest recognition between near-infrared β-cyclodextrin- CuInS2 QDs and aptamer. Talanta 2017, 165, 194-200.
Green, M.; Taylor, R.; Wakefield, G. The synthesis of luminescent adenosine triphosphate passivated cadmium sulfide nanoparticles. J. Mater. Chem. 2003, 13, 1859-1861.
Jia, J.; Zhang, H.; Zhao, L.; Zhu, Z. Y.; Zhang, G. Q.; Chai, Y. F. An optimized ion-pair HPLC method for simultaneous analysis of nucleoside triphosphate levels in hepatoma cell line. Chromatographia 2011, 73, 755-759.
Deng, J. J.; Wang, K.; Wang, M.; Yu, P.; Mao, L. Q. Mitochondria targeted nanoscale zeolitic imidazole framework-90 for ATP imaging in live cells. J. Am. Chem. Soc. 2017, 139, 5877-5882.