Microbial fuel cells and biophotovoltaics represent promising technologies for green bioelectricity generation. However, these devices suffer from low durability and efficiency that stem from their reliance on living organisms to act as catalysts. Such limitations can be overcome with augmented capabilities enabled by nanotechnology. This review presents an overview of the different nanomaterials used to enhance bioelectricity generation through improved light harvesting, extracellular electron transfer, and anode performance. The implementation of nanomaterials in whole-cell energy devices holds promise in developing bioelectrical devices that are suitable for industry.
United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects: The 2017 Revision, Key Findings and Advance Tables; United Nations: New York, 2017.
Huang, L. B.; Xu, W.; Hao, J. H. Energy device applications of synthesized 1D polymer nanomaterials. Small 2017, 13, 1701820.
Jiang, B. P.; Zhou, B.; Lin, Z. X.; Liang, H.; Shen, X. C. Recent advances in carbon nanomaterials for cancer phototherapy. Chem. —Eur. J. 2019, 25, 3993–4004.
Ghosal, K.; Sarkar, K. Biomedical applications of graphene nanomaterials and beyond. ACS Biomater. Sci. Eng. 2018, 4, 2653–2703.
Kwon, O. S.; Song, H. S.; Park, T. H.; Jang, J. Conducting nanomaterial sensor using natural receptors. Chem. Rev. 2019, 119, 36–93.
Schneemann, A.; White, J. L.; Kang, S.; Jeong, S.; Wan, L. F.; Cho, E. S.; Heo, T. W.; Prendergast, D.; Urban, J. J.; Wood, B. C. et al. Nanostructured metal hydrides for hydrogen storage. Chem. Rev. 2018, 118, 10775–10839.
Chen, Y.; Fan, Z. X.; Zhang, Z. C.; Niu, W. X.; Li, C. L.; Yang, N. L.; Chen, B.; Zhang, H. Two-dimensional metal nanomaterials: Synthesis, properties, and applications. Chem. Rev. 2018, 118, 6409–6455.
Wang, H.; Chen, Q. W.; Zhou, S. Q. Carbon-based hybrid nanogels: A synergistic nanoplatform for combined biosensing, bioimaging, and responsive drug delivery. Chem. Soc. Rev. 2018, 47, 4198–4232.
Wongkaew, N.; Simsek, M.; Griesche, C.; Baeumner, A. J. Functional nanomaterials and nanostructures enhancing electrochemical biosensors and lab-on-a-chip performances: Recent progress, applications, and future perspective. Chem. Rev. 2019, 119, 120–194.
Shin, T. H.; Cheon, J. Synergism of nanomaterials with physical stimuli for biology and medicine. Acc. Chem. Res. 2017, 50, 567–572.
Amirjani, A.; Fatmehsari, D. H. Colorimetric detection of ammonia using smartphones based on localized surface Plasmon resonance of silver nanoparticles. Talanta 2018, 176, 242–246.
Chen, J. M.; Guo, L. H.; Qiu, B.; Lin, Z. Y.; Wang, T. Application of ordered nanoparticle self-assemblies in surface-enhanced spectroscopy. Mater. Chem. Front. 2018, 2, 835–860.
Amirjani, A.; Haghshenas, D. F. Ag nanostructures as the surface Plasmon resonance (SPR)-based sensors: A mechanistic study with an emphasis on heavy metallic ions detection. Sens. Actuators B Chem. 2018, 273, 1768–1779.
Kalathil, S.; van Nguyen, H.; Shim, J. J.; Khan, M. M.; Lee, J.; Cho, M. H. Enhanced performance of a microbial fuel cell using CNT/MnO2 nanocomposite as a bioanode material. J. Nanosci. Nanotechnol. 2013, 13, 7712–7716.
Kou, T. Y.; Yang, Y.; Yao, B.; Li, Y. Interpenetrated bacteria-carbon nanotubes film for microbial fuel cells. Small Methods 2018, 2, 1800152.
Wu, R. R.; Cui, L.; Chen, L. X.; Wang, C.; Cao, C. L.; Sheng, G. P.; Yu, H.; Zhao, F. Effects of bio-Au nanoparticles on electrochemical activity of Shewanella oneidensis wild type and ΔomcA/mtrC mutant. Sci. Rep. 2013, 3, 3307.
Wu, R. R.; Wang, C.; Shen, J. S.; Zhao, F. A role for biosynthetic CdS quantum dots in extracellular electron transfer of Saccharomyces cerevisiae. Process Biochem. 2015, 50, 2061–2065.
Li, W.; Wu, S. S.; Zhang, H. R.; Zhang, X. J.; Zhuang, J. L.; Hu, C. F.; Liu, Y. L.; Lei, B. F.; Ma, L.; Wang, X. J. Enhanced biological photosynthetic efficiency using light-harvesting engineering with dual-emissive carbon dots. Adv. Funct. Mater. 2018, 28, 1804004.
Chandra, S.; Pradhan, S.; Mitra, S.; Patra, P.; Bhattacharya, A.; Pramanik, P.; Goswami, A. High throughput electron transfer from carbon dots to chloroplast: A rationale of enhanced photosynthesis. Nanoscale 2014, 6, 3647–3655.
Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem., in press, DOI: 10.1016/J.ARABJC.2017.05.011.
de Carvalho, J. F.; de Medeiros, S. N.; Morales, M. A.; Dantas, A. L.; Carriço, A. S. Synthesis of magnetite nanoparticles by high energy ball milling. Appl. Surf. Sci. 2013, 275, 84–87.
Tsuzuki, T.; McCormick, P. G. Mechanochemical synthesis of nanoparticles. J. Mater. Sci. 2004, 39, 5143–5146.
Mueller, R.; Mädler, L.; Pratsinis, S. E. Nanoparticle synthesis at high production rates by flame spray pyrolysis. Chem. Eng. Sci. 2003, 58, 1969–1976.
Gondal, M. A.; Drmosh, Q. A.; Yamani, Z. H.; Saleh, T. A. Synthesis of ZnO2 nanoparticles by laser ablation in liquid and their annealing transformation into ZnO nanoparticles. Appl. Surf. Sci. 2009, 256, 298–304.
Sen, P.; Ghosh, J.; Abdullah, A.; Kumar, P.; Vandana. Preparation of Cu, Ag, Fe and Al nanoparticles by the exploding wire technique. J. Chem. Sci. 2003, 115, 499–508.
Pérez-Tijerina, E.; Mejía-Rosales, S.; Inada, H.; José-Yacamán, M. Effect of temperature on AuPd nanoparticles produced by inert gas condensation. J. Phys. Chem. C 2010, 114, 6999–7003.
Gutiérrez-Wing, C.; Velázquez-Salazar, J. J.; José-Yacamán, M. Procedures for the synthesis and capping of metal nanoparticles. In Nanoparticles in Biology and Medicine: Methods and Protocols; Soloviev, M., Ed.; Humana Press: Totowa, NJ, 2012; pp 3–19.
Duan, H. H.; Wang, D. S.; Li, Y. D. Green chemistry for nanoparticle synthesis. Chem. Soc. Rev. 2015, 44, 5778–5792.
Rivero, P. J.; Goicoechea, J.; Urrutia, A.; Arregui, F. J. Effect of both protective and reducing agents in the synthesis of multicolor silver nanoparticles. Nanoscale Res. Lett. 2013, 8, 101.
Phan, C. M.; Nguyen, H. M. Role of capping agent in wet synthesis of nanoparticles. J. Phys. Chem. A 2017, 121, 3213–3219.
Yin, Y. D.; Alivisatos, A. P. Colloidal nanocrystal synthesis and the organic–inorganic interface. Nature 2005, 437, 664–670.
Dzimitrowicz, A.; Jamroz, P.; diCenzo, G. C.; Gil, W.; Bojszczak, W.; Motyka, A.; Pogoda, D.; Pohl, P. Fermented juices as reducing and capping agents for the biosynthesis of size-defined spherical gold nanoparticles. J. Saudi Chem. Soc. 2018, 22, 767–776.
Tan, Y. N.; Lee, J. Y.; Wang, D. I. C. Uncovering the design rules for peptide synthesis of metal nanoparticles. J. Am. Chem. Soc. 2010, 132, 5677–5686.
Chiu, C. Y.; Li, Y. J.; Ruan, L. Y.; Ye, X. C.; Murray, C. B.; Huang, Y. Platinum nanocrystals selectively shaped using facet-specific peptide sequences. Nat. Chem. 2011, 3, 393–399.
Jiang, X. C.; Hu, J. S.; Lieber, A. M.; Jackan, C. S.; Biffinger, J. C.; Fitzgerald, L. A.; Ringeisen, B. R.; Lieber, C. M. Nanoparticle facilitated extracellular electron transfer in microbial fuel cells. Nano Lett. 2014, 14, 6737–6742.
Wu, X. E.; Zhao, F.; Rahunen, N.; Varcoe, J. R.; Avignone-Rossa, C.; Thumser, A. E.; Slade, R. C. T. A role for microbial palladium nanoparticles in extracellular electron transfer. Angew. Chem. 2011, 123, 447–450.
Dong, C. F.; Zhang, X. L.; Cai, H.; Cao, C. L. Green synthesis of biocompatible silver nanoparticles mediated by Osmanthus fragrans extract in aqueous solution. Optik 2016, 127, 10378–10388.
Huang, H. Z.; Yang, X. R. Synthesis of polysaccharide-stabilized gold and silver nanoparticles: A green method. Carbohydr. Res. 2004, 339, 2627–2631.
Hulkoti, N. I.; Taranath, T. C. Biosynthesis of nanoparticles using microbes—A review. Colloids Surf. B Biointerfaces 2014, 121, 474–483.
Freitas, D. V.; Passos, S. G. B.; Dias, J. M. M.; Mansur, A.; Carvalho, S. M.; Mansur, H.; Navarro, M. Toward greener electrochemical synthesis of composition-tunable luminescent CdX-based (X = Te, Se, S) quantum dots for bioimaging cancer cells. Sens. Actuators B Chem. 2017, 250, 233–243.
Kuo, T. R.; Hung, S. T.; Lin, Y. T.; Chou, T. L.; Kuo, M. C.; Kuo, Y. P.; Chen, C. C. Green synthesis of InP/ZnS core/shell quantum dots for application in heavy-metal-free light-emitting diodes. Nanoscale Res. Lett. 2017, 12, 537.
Wang, Z.; Cao, L. J.; Ding, Y. M.; Shi, R.; Wang, X. J.; Lu, H.; Liu, Z. D.; Xiu, F.; Liu, J. Q.; Huang, W. One-step and green synthesis of nitrogen- doped carbon quantum dots for multifunctional electronics. RSC Adv. 2017, 7, 21969–21973.
Durmusoglu, E. G.; Turker, Y.; Acar, H. Y. Green synthesis of strongly luminescent, ultrasmall PbS and PbSe quantum dots. J. Phys. Chem. C 2017, 121, 12407–12415.
Gerion, D.; Pinaud, F.; Williams, S. C.; Parak, W. J.; Zanchet, D.; Weiss, S.; Alivisatos, A. P. Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots. J. Phys. Chem. B 2001, 105, 8861–8871.
Gao, X. H.; Yang, L.; Petros, J. A.; Marshall, F. F.; Simons, J. W.; Nie, S. M. In vivo molecular and cellular imaging with quantum dots. Curr. Opin. Biotechnol. 2005, 16, 63–72.
Pu, Y.; Cai, F. H.; Wang, D.; Wang, J. X.; Chen, J. F. Colloidal synthesis of semiconductor quantum dots toward large-scale production: A review. Ind. Eng. Chem. Res. 2018, 57, 1790–1802.
Baskoutas, S.; Terzis, A. F. Size-dependent band gap of colloidal quantum dots. J. Appl. Phys. 2006, 99, 013708.
Nabiev, I.; Rakovich, A.; Sukhanova, A.; Lukashev, E.; Zagidullin, V.; Pachenko, V.; Rakovich, Y. P.; Donegan, J. F.; Rubin, A. B.; Govorov, A. O. Fluorescent quantum dots as artificial antennas for enhanced light harvesting and energy transfer to photosynthetic reaction centers. Angew. Chem., Int. Ed. 2010, 49, 7217–7221.
Bao, H. F.; Lu, Z. S.; Cui, X. Q.; Qiao, Y.; Guo, J.; Anderson, J. M.; Li, C. M. Extracellular microbial synthesis of biocompatible CdTe quantum dots. Acta Biomater. 2010, 6, 3534–3541.
Bao, H. F.; Hao, N.; Yang, Y. X.; Zhao, D. Y. Biosynthesis of biocompatible cadmium telluride quantum dots using yeast cells. Nano Res. 2010, 3, 481–489.
Chen, G. Q.; Yi, B.; Zeng, G. M.; Niu, Q. Y.; Yan, M.; Chen, A. W.; Du, J. J.; Huang, J.; Zhang, Q. H. Facile green extracellular biosynthesis of CdS quantum dots by white rot fungus Phanerochaete chrysosporium. Colloids Surf. B Biointerfaces 2014, 117, 199–205.
Boghossian, A. A.; Sen, F.; Gibbons, B. M.; Sen, S.; Faltermeier, S. M.; Giraldo, J. P.; Zhang, C. T.; Zhang, J. Q.; Heller, D. A.; Strano, M. S. Application of nanoparticle antioxidants to enable hyperstable chloroplasts for solar energy harvesting. Adv. Energy Mater. 2013, 3, 881–893.
Hong, F. S.; Zhou, J.; Liu, C.; Yang, F.; Wu, C.; Zheng, L.; Yang, P. Effect of nano-TiO2 on photochemical reaction of chloroplasts of spinach. Biol. Trace Elem. Res. 2005, 105, 269–279.
Sun, D. Q.; Hussain, H. I.; Yi, Z. F.; Rookes, J. E.; Kong, L. X.; Cahill, D. M. Mesoporous silica nanoparticles enhance seedling growth and photosynthesis in wheat and lupin. Chemosphere 2016, 152, 81–91.
Nikam, A. V.; Prasad, B. L. V.; Kulkarni, A. A. Wet chemical synthesis of metal oxide nanoparticles: A review. CrystEngComm 2018, 20, 5091–5107.
Rufus, A.; Sreeju, N.; Philip, D. Synthesis of biogenic hematite (α-Fe2O3) nanoparticles for antibacterial and nanofluid applications. RSC Adv. 2016, 6, 94206–94217.
Santhoshkumar, J.; Kumar, S. V.; Rajeshkumar, S. Synthesis of zinc oxide nanoparticles using plant leaf extract against urinary tract infection pathogen. Resour. Effic. Technol. 2017, 3, 459–465.
Kumar, P. P. N. V.; Shameem, U.; Kollu, P.; Kalyani, R. L.; Pammi, S. V. N. Green synthesis of copper oxide nanoparticles using Aloe vera leaf extract and its antibacterial activity against fish bacterial pathogens. Bionanoscience 2015, 5, 135–139.
Zaytseva, O.; Neumann, G. Carbon nanomaterials: Production, impact on plant development, agricultural and environmental applications. Chem. Biol. Technol. Agric. 2016, 3, 17.
Endo, M.; Iijima, S.; Dresselhaus, S. M. Carbon Nanotubes. Carbon; Elsevier: Oxford, 1996.
Kroto, H. W.; Heath, J. R.; O'Brien, S. C.; Curl, R. F.; Smalley, R. E. C60: Buckminsterfullerene. Nature 1985, 318, 162–163.
Scott, L. T.; Boorum, M. M.; Mcmahon, B. J.; Hagen, S.; Mack, J.; Blank, J.; Wegner, H.; de Meijere, A. A rational chemical synthesis of C60. Science 2002, 295, 1500–1503.
Yadav, B. C.; Kumar, R. Structure, properties and applications of fullerenes. Int. J. Nanotechnol. Appl. 2008, 2, 15–24.
Tripathi, D. K.; Ahmad, P.; Sharma, S.; Chauhan, D. K.; Dubey, N. K. Nanomaterials in Plants, Algae, and Microorganisms: Concepts and Controversies: Volume 1; Academic Press: London, 2017.
Lin, S. J.; Reppert, J.; Hu, Q.; Hudson, J. S.; Reid, M. L.; Ratnikova, T. A.; Rao, A. M.; Luo, H.; Ke, P. C. Uptake, translocation, and transmission of carbon nanomaterials in rice plants. Small 2009, 5, 1128–1132.
Imahori, H.; Mori, Y.; Matano, Y. Nanostructured artificial photosynthesis. J. Photochem. Photobiol. C Photochem. Rev. 2003, 4, 51–83.
D'Souza, F.; Smith, P. M.; Zandler, M. E.; McCarty, A. L.; Itou, M.; Araki, Y.; Ito, O. Energy transfer followed by electron transfer in a supramolecular triad composed of boron dipyrrin, zinc porphyrin, and fullerene: A model for the photosynthetic antenna-reaction center complex. J. Am. Chem. Soc. 2004, 126, 7898–7907.
Imahori, H.; Fukuzumi, S. Porphyrin-and fullerene-based molecular photovoltaic devices. Adv. Funct. Mater. 2004, 14, 525–536.
El-Khouly, M. E.; Araki, Y.; Fujitsuka, M.; Watanabe, A.; Ito, O. Photoinduced electron transfer between chlorophylls (a/b) and fullerenes (C60/C70) studied by laser flash photolysis. Photochem. Photobiol. 2001, 74, 22–30.
Eatemadi, A.; Daraee, H.; Karimkhanloo, H.; Kouhi, M.; Zarghami, N.; Akbarzadeh, A.; Abasi, M.; Hanifehpour, Y.; Joo, S. W. Carbon nanotubes: Properties, synthesis, purification, and medical applications. Nanoscale Res. Lett. 2014, 9, 393.
Bronikowski, M. J.; Willis, P. A.; Colbert, D. T.; Smith, K. A.; Smalley, R. E. Gas-phase production of carbon single-walled nanotubes from carbon monoxide via the HiPco process: A parametric study. J. Vac. Sci. Technol. A 2001, 19, 1800–1805.
Bachilo, S. M.; Balzano, L.; Herrera, J. E.; Pompeo, F.; Resasco, D. E.; Weisman, R. B. Narrow (n, m)-distribution of single-walled carbon nanotubes grown using a solid supported catalyst. J. Am. Chem. Soc. 2003, 125, 11186–11187.
Kitiyanan, B.; Alvarez, W. E.; Harwell, J. H.; Resasco, D. E. Controlled production of single-wall carbon nanotubes by catalytic decomposition of CO on bimetallic Co–Mo catalysts. Chem. Phys. Lett. 2000, 317, 497–503.
Herrera, J. E.; Balzano, L.; Borgna, A.; Alvarez, W. E.; Resasco, D. E. Relationship between the structure/composition of Co-Mo catalysts and their ability to produce single-walled carbon nanotubes by CO disproportionation. J. Catal. 2001, 204, 129–145.
Giraldo, J. P.; Landry, M. P.; Faltermeier, S. M.; McNicholas, T. P.; Iverson, N. M.; Boghossian, A. A.; Reuel, N. F.; Hilmer, A. J.; Sen, F.; Brew, J. A. et al. Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat. Mater. 2014, 13, 400–408.
Dorogi, M.; Bálint, Z.; Mikó, C.; Vileno, B.; Milas, M.; Hernádi, K.; László, F.; Váró, G.; Nagy, L. Stabilization effect of single-walled carbon nanotubes on the functioning of photosynthetic reaction centers. J. Phys. Chem. B 2006, 110, 21473–21479.
Kaniber, S. M.; Simmel, F. C.; Holleitner, A. W.; Carmeli, I. The optoelectronic properties of a photosystem I-carbon nanotube hybrid system. Nanotechnology 2009, 20, 345701.
Sekar, N.; Umasankar, Y.; Ramasamy, R. P. Photocurrent generation by immobilized cyanobacteria via direct electron transport in photo- bioelectrochemical cells. Phys. Chem. Chem. Phys. 2014, 16, 7862–7871.
Yan, F. F.; He, Y. R.; Wu, C.; Cheng, Y. Y.; Li, W. W.; Yu, H. Q. Carbon nanotubes alter the electron flow route and enhance nitrobenzene reduction by Shewanella oneidensis MR-1. Environ. Sci. Technol. Lett. 2014, 1, 128–132.
Kim, S. I.; Roh, S. H. Multiwalled carbon nanotube/polyarcylonitrile composite as anode material for microbial fuel cells application. J. Nanosci. Nanotechnol. 2010, 10, 3271–3274.
Wang, C.; Waje, M.; Wang, X.; Tang, J. M.; Haddon, R. C.; Yan, Y. S. Proton exchange membrane fuel cells with carbon nanotube based electrodes. Nano Lett. 2004, 4, 345–348.
Danilov, M. O.; Melezhyk, A. V. Carbon nanotubes modified with catalyst—Promising material for fuel cells. J. Power Sources 2006, 163, 376–381.
Peng, L.; You, S. J.; Wang, J. Y. Carbon nanotubes as electrode modifier promoting direct electron transfer from Shewanella oneidensis. Biosens. Bioelectron. 2010, 25, 1248–1251.
Zhao, C. E.; Wu, J. S.; Ding, Y. Z.; Wang, V. B.; Zhang, Y. D.; Kjelleberg, S.; Loo, J. S. C.; Cao, B.; Zhang, Q. C. Hybrid conducting biofilm with built-in bacteria for high-performance microbial fuel cells. ChemElectroChem 2015, 2, 654–658.
Zhao, C. E.; Wu, J. S.; Kjelleberg, S.; Loo, J. S. C.; Zhang, Q. C. Employing a flexible and low-cost polypyrrole nanotube membrane as an anode to enhance current generation in microbial fuel cells. Small 2015, 11, 3440–3443.
Wang, H. Y.; Wang, G. M.; Ling, Y. C.; Qian, F.; Song, Y.; Lu, X. H.; Chen, S. W.; Tong, Y. X.; Li, Y. High power density microbial fuel cell with flexible 3D graphene-nickel foam as anode. Nanoscale 2013, 5, 10283–10290.
Yong, Y. C.; Dong, X. C.; Chan-Park, M. B.; Song, H.; Chen, P. Macroporous and monolithic anode based on polyaniline hybridized three-dimensional graphene for high-performance microbial fuel cells. ACS Nano 2012, 6, 2394–2400.
Yuan, Y.; Zhou, S. G.; Zhao, B.; Zhuang, L.; Wang, Y. Q. Microbially- reduced graphene scaffolds to facilitate extracellular electron transfer in microbial fuel cells. Bioresour. Technol. 2012, 116, 453–458.
Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706–710.
Bae, S.; Kim, H.; Lee, Y.; Xu, X. F.; Park, J. S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Ri Kim, H.; Song, Y. I. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010, 5, 574–578.
Hu, C. G.; Zhang, Y. Y.; Bao, G.; Zhang, Y. L.; Liu, M. L.; Wang, Z. L. DNA functionalized single-walled carbon nanotubes for electrochemical detection. J. Phys. Chem. B 2005, 109, 20072–20076.
Martínková, N.; Nová, P.; Sablina, O. V.; Graphodatsky, A. S.; Zima, J. Karyotypic relationships of the Tatra vole (Microtus tatricus). Folia Zool. 2004, 53, 279–284.
Li, X. S.; Cai, W. W.; An, J.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. et al. Large-area synthesis of high- quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.
Lee, S.; Eom, S. H.; Chung, J. S.; Hur, S. H. Large-scale production of high-quality reduced graphene oxide. Chem. Eng. J. 2013, 233, 297–304.
Hummers, W. S. Jr.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339.
Tamburri, E.; Orlanducci, S.; Toschi, F.; Terranova, M. L.; Passeri, D. Growth mechanisms, morphology, and electroactivity of PEDOT layers produced by electrochemical routes in aqueous medium. Synth. Met. 2009, 159, 406–414.
Wang, Y. X.; Li, S. L.; Liu, L. B.; Lv, F. T.; Wang, S. Conjugated polymer nanoparticles to augment photosynthesis of chloroplasts. Angew. Chem., Int. Ed. 2017, 56, 5308–5311.
Feng, L. H.; Liu, L. B.; Lv, F. T.; Bazan, G. C.; Wang, S. Preparation and biofunctionalization of multicolor conjugated polymer nanoparticles for imaging and detection of tumor cells. Adv. Mater. 2014, 26, 3926–3930.
Xie, J.; Zhao, C. E.; Lin, Z. Q.; Gu, P. Y.; Zhang, Q. C. Nanostructured conjugated polymers for energy-related applications beyond solar cells. Chem. —Asian J. 2016, 11, 1489–1511.
Li, C.; Zhang, L. B.; Ding, L. L.; Ren, H. Q.; Cui, H. Effect of conductive polymers coated anode on the performance of microbial fuel cells (MFCs) and its biodiversity analysis. Biosens. Bioelectron. 2011, 26, 4169–4176.
Kang, Y. L.; Ibrahim, S.; Pichiah, S. Synergetic effect of conductive polymer poly(3, 4-ethylenedioxythiophene) with different structural configuration of anode for microbial fuel cell application. Bioresour. Technol. 2015, 189, 364–369.
Song, R. B.; Yan, K.; Lin, Z. Q.; Loo, J. S. C.; Pan, L. J.; Zhang, Q. C.; Zhang, J. R.; Zhu, J. J. Inkjet-printed porous polyaniline gel as an efficient anode for microbial fuel cells. J. Mater. Chem. A 2016, 4, 14555–14559.
Bombelli, P.; Zarrouati, M.; Thorne, R. J.; Schneider, K.; Rowden, S. J. L.; Ali, A.; Yunus, K.; Cameron, P. J.; Fisher, A. C.; Ian Wilson, D. et al. Surface morphology and surface energy of anode materials influence power outputs in a multi-channel mediatorless bio-photovoltaic (BPV) system. Phys. Chem. Chem. Phys. 2012, 14, 12221–12229.
Song, R. B.; Wu, Y. C.; Lin, Z. Q.; Xie, J.; Tan, C. H.; Loo, J. S. C.; Cao, B.; Zhang, J. R.; Zhu, J. J.; Zhang, Q. C. Living and conducting: Coating individual bacterial cells with in situ formed polypyrrole. Angew. Chem., Int. Ed. 2017, 56, 10516–10520.
Zajdel, T. J.; Baruch, M.; Méhes, G.; Stavrinidou, E.; Berggren, M.; Maharbiz, M. M.; Simon, D. T.; Ajo-Franklin, C. M. PEDOT: PSS-based multilayer bacterial-composite films for bioelectronics. Sci. Rep. 2018, 8, 15293.
Barber, J. Photosynthetic energy conversion: Natural and artificial. Chem. Soc. Rev. 2009, 38, 185–196.
Scholes, G. D.; Fleming, G. R.; Olaya-Castro, A.; van Grondelle, R. Lessons from nature about solar light harvesting. Nat. Chem. 2011, 3, 763–774.
Wraight, C. A.; Clayton, R. K. The absolute quantum efficiency of bacteriochlorophyll photooxidation in reaction centres of Rhodopseudomonas spheroides. Biochim. Biophys. ActaBioenerg. 1974, 333, 246–260.
Cho, H. M.; Mancino, L. J.; Blankenship, R. E. Light saturation curves and quantum yields in reaction centers from photosynthetic bacteria. Biophys. J. 1984, 45, 455–461.
Martin, W.; Kowallik, K. Annotated english translation of mereschkowsky's 1905 paper "Über natur und ursprung der chromatophoren impflanzenreiche". Eur. J. Phycol. 1999, 34, 287–295.
Raven, J. A.; Allen, J. F. Genomics and chloroplast evolution: What did cyanobacteria do for plants? Genome Biol. 2003, 4, 209.
Blankenship, R. E. Early evolution of photosynthesis. Plant Physiol. 2010, 154, 434–438.
Barber, J.; Tran, P. D. From natural to artificial photosynthesis. J. Roy. Soc. Interface 2013, 10, 20120984.
Gust, D.; Moore, T. A.; Moore, A. L. Mimicking photosynthetic solar energy transduction. Acc. Chem. Res. 2001, 34, 40–48.
Alharbi, F. H.; Kais, S. Theoretical limits of photovoltaics efficiency and possible improvements by intuitive approaches learned from photosynthesis and quantum coherence. Renew. Sustain. Energy Rev. 2015, 43, 1073–1089.
Blankenship, R. E.; Tiede, D. M.; Barber, J.; Brudvig, G. W.; Fleming, G.; Ghirardi, M.; Gunner, M. R.; Junge, W.; Kramer, D. M.; Melis, A. et al. Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 2011, 332, 805–809.
Kalyanasundaram, K.; Graetzel, M. Artificial photosynthesis: Biomimetic approaches to solar energy conversion and storage. Curr. Opin. Biotechnol. 2010, 21, 298–310.
Badura, A.; Kothe, T.; Schuhmann, W.; Rögner, M. Wiring photosynthetic enzymes to electrodes. Energy Environ. Sci. 2011, 4, 3263–3274.
Ham, M. H.; Choi, J. H.; Boghossian, A. A.; Jeng, E. S.; Graff, R. A.; Heller, D. A.; Chang, A. C.; Mattis, A.; Bayburt, T. H.; Grinkova, Y. V. et al. Photoelectrochemical complexes for solar energy conversion that chemically and autonomously regenerate. Nat. Chem. 2010, 2, 929–936.
Milano, F.; Punzi, A.; Ragni, R.; Trotta, M.; Farinola, G. M. Photonics and optoelectronics with bacteria: Making materials from photosynthetic microorganisms. Adv. Funct. Mater. 2019, 29, 1805521.
McCormick, A. J.; Bombelli, P.; Scott, A. M.; Philips, A. J.; Smith, A. G.; Fisher, A. C.; Howe, C. J. Photosynthetic biofilms in pure culture harness solar energy in a mediatorless bio-photovoltaic cell (BPV) system. Energy Environ. Sci. 2011, 4, 4699–4709.
Wenzel, T.; Härtter, D.; Bombelli, P.; Howe, C. J.; Steiner, U. Porous translucent electrodes enhance current generation from photosynthetic biofilms. Nat. Commun. 2018, 9, 1299.
Sawa, M.; Fantuzzi, A.; Bombelli, P.; Howe, C. J.; Hellgardt, K.; Nixon, P. J. Electricity generation from digitally printed cyanobacteria. Nat. Commun. 2017, 8, 1327.
Operamolla, A.; Ragni, R.; Milano, F.; Roberto Tangorra, R.; Antonucci, A.; Agostiano, A.; Trotta, M.; Farinola, G. "Garnishing" the photosynthetic bacterial reaction center for bioelectronics. J. Mater. Chem. C 2015, 3, 6471–6478.
Kim, Y.; Shin, S. A.; Lee, J.; Yang, K. D.; Nam, K. T. Hybrid system of semiconductor and photosynthetic protein. Nanotechnology 2014, 25, 342001.
Yaghoubi, H.; Li, Z.; Jun, D. L.; Saer, R.; Slota, J. E.; Beerbom, M.; Schlaf, R.; Madden, J. D.; Beatty, J. T.; Takshi, A. The role of gold- adsorbed photosynthetic reaction centers and redox mediators in the charge transfer and photocurrent generation in a bio-photoelectrochemical cell. J. Phys. Chem. C 2012, 116, 24868–24877.
Głowacki, E. D.; Tangorra, R. R.; Coskun, H.; Farka, D.; Operamolla, A.; Kanbur, Y.; Milano, F.; Giotta, L.; Farinola, G. M.; Sariciftci, N. S. Bioconjugation of hydrogen-bonded organic semiconductors with functional proteins. J. Mater. Chem. C 2015, 3, 6554–6564.
Mirkovic, T.; Ostroumov, E. E.; Anna, J. M.; van Grondelle, R.; Govindjee; Scholes, G. D. Light absorption and energy transfer in the antenna complexes of photosynthetic organisms. Chem. Rev. 2017, 117, 249–293.
Govorov, A. O. Enhanced optical properties of a photosynthetic system conjugated with semiconductor nanoparticles: The role of förster transfer. Adv. Mater. 2008, 20, 4330–4335.
Cai, P.; Jia, Y.; Feng, X. Y.; Li, J.; Li, J. B. Assembly of CdTe quantum dots and photosystem Ⅱ multilayer films with enhanced photocurrent. Chin. J. Chem. 2017, 35, 881–885.
Carmeli, I.; Lieberman, I.; Kraversky, L.; Fan, Z. Y.; Govorov, A. O.; Markovich, G.; Richter, S. Broad band enhancement of light absorption in photosystem I by metal nanoparticle antennas. Nano Lett. 2010, 10, 2069–2074.
Beyer, S. R.; Ullrich, S.; Kudera, S.; Gardiner, A. T.; Cogdell, R. J.; Köhler, J. Hybrid nanostructures for enhanced light-harvesting: Plasmon induced increase in fluorescence from individual photosynthetic pigment- protein complexes. Nano Lett. 2011, 11, 4897–4901.
Yehezkeli, O.; Tel-Vered, R.; Wasserman, J.; Trifonov, A.; Michaeli, D.; Nechushtai, R.; Willner, I. Integrated photosystem Ⅱ-based photo- bioelectrochemical cells. Nat. Commun. 2012, 3, 742.
Lebedev, N.; Trammell, S. A.; Tsoi, S.; Spano, A.; Kim, J. H.; Xu, J.; Twigg, M. E.; Schnur, J. M. Increasing efficiency of photoelectronic conversion by encapsulation of photosynthetic reaction center proteins in arrayed carbon nanotube electrode. Langmuir 2008, 24, 8871–8876.
Edelman, M.; Mattoo, A. K. D1-protein dynamics in photosystem Ⅱ: The lingering enigma. Photosynth. Res. 2008, 98, 609–620.
Scholes, G. D.; Sargent, E. H. Bioinspired materials: Boosting plant biology. Nat. Mater. 2014, 13, 329–331.
Heath, R. L.; Packer, L. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 1968, 125, 189–198.
Pradhan, S.; Patra, P.; Mitra, S.; Dey, K. K.; Basu, S.; Chandra, S.; Palit, P.; Goswami, A. Copper nanoparticle (CuNP) nanochain arrays with a reduced toxicity response: A biophysical and biochemical outlook on Vigna radiata. J. Agric. Food Chem. 2015, 63, 2606–2617.
Faizan, M.; Faraz, A.; Yusuf, M.; Khan, S. T.; Hayat, S. Zinc oxide nanoparticle-mediated changes in photosynthetic efficiency and antioxidant system of tomato plants. Photosynthetica 2018, 56, 678–686.
Wu, H. H.; Tito, N.; Giraldo, J. P. Anionic cerium oxide nanoparticles protect plant photosynthesis from abiotic stress by scavenging reactive oxygen species. ACS Nano 2017, 11, 11283–11297.
Wong, M. H.; Misra, R. P.; Giraldo, J. P.; Kwak, S. Y.; Son, Y.; Landry, M. P.; Swan, J. W.; Blankschtein, D.; Strano, M. S. Lipid exchange envelope penetration (LEEP) of nanoparticles for plant engineering: A universal localization mechanism. Nano Lett. 2016, 16, 1161–1172.
Lew, T. T. S.; Wong, M. H.; Kwak, S. Y.; Sinclair, R.; Koman, V. B.; Strano, M. S. Rational design principles for the transport and subcellular distribution of nanomaterials into plant protoplasts. Small 2018, 14, 1802086.
Antonucci, A.; Kupis-Rozmysłowicz, J.; Boghossian, A. A. Noncovalent protein and peptide functionalization of single-walled carbon nanotubes for biodelivery and optical sensing applications. ACS Appl. Mater. Interfaces 2017, 9, 11321–11331.
Sai, L. M.; Liu, S. Q.; Qian, X. X.; Yu, Y. H.; Xu, X. F. Nontoxic fluorescent carbon nanodot serving as a light conversion material in plant for UV light utilization. Colloids Surf. B Biointerfaces 2018, 169, 422–428.
Xu, Y. Q.; Fei, J. B.; Li, G. L.; Yuan, T. T.; Xu, X.; Wang, C. L.; Li, J. B. Optically matched semiconductor quantum dots improve photophosphorylation performed by chloroplasts. Angew. Chem., Int. Ed. 2018, 57, 6532–6535.
Pradhan, S.; Patra, P.; Das, S.; Chandra, S.; Mitra, S.; Dey, K. K.; Akbar, S.; Palit, P.; Goswami, A. Photochemical modulation of biosafe manganese nanoparticles on Vigna radiata: A detailed molecular, biochemical, and biophysical study. Environ. Sci. Technol. 2013, 47, 13122–13131.
Marritt, S. J.; Lowe, T. G.; Bye, J.; McMillan, D. G. G.; Shi, L.; Fredrickson, J.; Zachara, J.; Richardson, D. J.; Cheesman, M. R.; Jeuken, L. J. C. et al. A functional description of CymA, an electron-transfer hub supporting anaerobic respiratory flexibility in Shewanella. Biochem. J. 2012, 444, 465–474.
Hori, T.; Aoyagi, T.; Itoh, H.; Narihiro, T.; Oikawa, A.; Suzuki, K.; Ogata, A.; Friedrich, M. W.; Conrad, R.; Kamagata, Y. Isolation of microorganisms involved in reduction of crystalline iron(Ⅲ) oxides in natural environments. Front. Microbiol. 2015, 6, 386.
Cologgi, D. L.; Lampa-Pastirk, S.; Speers, A. M.; Kelly, S. D.; Reguera, G. Extracellular reduction of uranium via Geobacter conductive pili as a protective cellular mechanism. Proc. Natl. Acad. Sci. USA 2011, 108, 15248–15252.
Belchik, S. M.; Kennedy, D. W.; Dohnalkova, A. C.; Wang, Y. M.; Sevinc, P. C.; Wu, H.; Lin, Y. H.; Lu, H. P.; Fredrickson, J. K.; Shi, L. Extracellular reduction of hexavalent chromium by cytochromes MtrC and OmcA of Shewanella oneidensis MR-1. Appl. Environ. Microbiol. 2011, 77, 4035–4041.
Wei, J. C.; Liang, P.; Huang, X. Recent progress in electrodes for microbial fuel cells. Bioresour. Technol. 2011, 102, 9335–9344.
Bose, D.; Kandpal, V.; Dhawan, H.; Vijay, P.; Gopinath, M. Energy recovery with microbial fuel cells: Bioremediation and bioelectricity. In Waste Bioremediation; Varjani, S. J.; Gnansounou, E.; Gurunathan, B.; Pant, D.; Zakaria, Z. A., Eds.; Springer: Singapore, 2018; pp 7–33.
Light, S. H.; Su, L.; Rivera-Lugo, R.; Cornejo, J. A.; Louie, A.; Iavarone, A. T.; Ajo-Franklin, C. M.; Portnoy, D. A. A flavin-based extracellular electron transfer mechanism in diverse Gram-positive bacteria. Nature 2018, 562, 140–144.
You, L. X.; Liu, L. D.; Xiao, Y.; Dai, Y. F.; Chen, B. L.; Jiang, Y. X.; Zhao, F. Flavins mediate extracellular electron transfer in Gram-positive Bacillus megaterium strain LLD-1. Bioelectrochemistry 2018, 119, 196–202.
Deng, H.; Xue, H. J.; Zhong, W. H. A novel exoelectrogenic bacterium phylogenetically related to Clostridium sporogenes isolated from copper contaminated soil. Electroanalysis 2017, 29, 1294–1300.
Jiang, Z. H.; Zhang, Y. C.; Liu, Z. Z.; Ma, Y. M.; Kang, J. Q.; Liu, Y. Isolation and characterization of an exoelectrogenic strain CL-1 from soil and electron transfer mechanism by linking electrochemistry and spectroscopy. Electrochim. Acta 2018, 292, 982–989.
Koch, C.; Harnisch, F. Is there a specific ecological niche for electroactive microorganisms? ChemElectroChem 2016, 3, 1282–1295.
Stookey, L. L. Ferrozine—A new spectrophotometric reagent for iron. Anal. Chem. 1970, 42, 779–781.
Jensen, H. M.; TerAvest, M. A.; Kokish, M. G.; Ajo-Franklin, C. M. CymA and exogenous flavins improve extracellular electron transfer and couple it to cell growth in Mtr-expressing Escherichia coli. ACS Synth. Biol. 2016, 5, 679–688.
Xiao, X.; Liu, Q. Y.; Li, T. T.; Zhang, F.; Li, W. W.; Zhou, X. T.; Xu, M. Y.; Li, Q.; Yu, H. Q. A high-throughput dye-reducing photometric assay for evaluating microbial exoelectrogenic ability. Bioresour. Technol. 2017, 241, 743–749.
Liu, Y. N.; Zhang, F.; Li, J.; Li, D. B.; Liu, D. F.; Li, W. W.; Yu, H. Q. Exclusive extracellular bioreduction of methyl orange by Azo reductase- free Geobacter sulfurreducens. Environ. Sci. Technol. 2017, 51, 8616–8623.
Yuan, S. J.; Li, W. W.; Cheng, Y. Y.; He, H.; Chen, J. J.; Tong, Z. H.; Lin, Z. Q.; Zhang, F.; Sheng, G. P.; Yu, H. Q. A plate-based electrochromic approach for the high-throughput detection of electrochemically active bacteria. Nat. Protoc. 2014, 9, 112–119.
Shi, L.; Squier, T. C.; Zachara, J. M.; Fredrickson, J. K. Respiration of metal (hydr)oxides by Shewanella and Geobacter: A key role for multihaem c-type cytochromes. Mol. Microbiol. 2007, 65, 12–20.
Sturm-Richter, K.; Golitsch, F.; Sturm, G.; Kipf, E.; Dittrich, A.; Beblawy, S.; Kerzenmacher, S.; Gescher, J. Unbalanced fermentation of glycerol in Escherichia coli via heterologous production of an electron transport chain and electrode interaction in microbial electrochemical cells. Bioresour. Technol. 2015, 186, 89–96.
Jensen, H. M.; Albers, A. E.; Malley, K. R.; Londer, Y. Y.; Cohen, B. E.; Helms, B. A.; Weigele, P.; Groves, J. T.; Ajo-Franklin, C. M. Engineering of a synthetic electron conduit in living cells. Proc. Natl. Acad. Sci. USA 2010, 107, 19213–19218.
Goldbeck, C. P.; Jensen, H. M.; Teravest, M. A.; Beedle, N.; Appling, Y.; Hepler, M.; Cambray, G.; Mutalik, V.; Angenent, L. T.; Ajo-Franklin, C. M. Tuning promoter strengths for improved synthesis and function of electron conduits in Escherichia coli. ACS Synth. Biol. 2013, 2, 150–159.
Teravest, M. A.; Ajo-Franklin, C. M. Transforming exoelectrogens for biotechnology using synthetic biology. Biotechnol. Bioeng. 2016, 113, 687–697.
Shi, L.; Rosso, K. M.; Zachara, J. M.; Fredrickson, J. K. Mtr extracellular electron-transfer pathways in Fe(Ⅲ)-reducing or Fe(Ⅱ)-oxidizing bacteria: A genomic perspective. Biochem. Soc. Trans. 2012, 40, 1261–1267.
Gao, H. C.; Barua, S.; Liang, Y. L.; Wu, L.; Dong, Y. Y.; Reed, S.; Chen, J. R.; Culley, D.; Kennedy, D.; Yang, Y. F. et al. Impacts of Shewanella oneidensis c-type cytochromes on aerobic and anaerobic respiration. Microb. Biotechnol. 2010, 3, 455–466.
Myers, J. M.; Myers, C. R. Role of the tetraheme cytochrome CymA in anaerobic electron transport in cells of Shewanella putrefaciens MR-1 with normal levels of menaquinone. J. Bacteriol. 2000, 182, 67–75.
Fonseca, B. M.; Paquete, C. M.; Neto, S. E.; Pacheco, I.; Soares, C. M.; Louro, R. O. Mind the gap: Cytochrome interactions reveal electron pathways across the periplasm of Shewanella oneidensis MR-1. Biochem. J. 2013, 449, 101–108.
Sturm, G.; Richter, K.; Doetsch, A.; Heide, H.; Louro, R. O.; Gescher, J. A dynamic periplasmic electron transfer network enables respiratory flexibility beyond a thermodynamic regulatory regime. ISME J. 2015, 9, 1802–1811.
Hartshorne, R. S.; Reardon, C. L.; Ross, D.; Nuester, J.; Clarke, T. A.; Gates, A. J.; Mills, P. C.; Fredrickson, J. K.; Zachara, J. M.; Shi, L. et al. Characterization of an electron conduit between bacteria and the extracellular environment. Proc. Natl. Acad. Sci. USA 2009, 106, 22169–22174.
Shi, L.; Chen, B. W.; Wang, Z. M.; Elias, D. A.; Mayer, M. U.; Gorby, Y. A.; Ni, S.; Lower, B. H.; Kennedy, D. W.; Wunschel, D. S. et al. Isolation of a high-affinity functional protein complex between OmcA and MtrC: Two outer membrane decaheme c-type cytochromes of Shewanella oneidensis MR-1. J. Bacteriol. 2006, 188, 4705–4714.
White, G. F.; Edwards, M. J.; Gomez-Perez, L.; Richardson, D. J.; Butt, J. N.; Clarke, T. A. Mechanisms of bacterial extracellular electron exchange. Adv. Microb. Physiol. 2016, 68, 87–138.
Coursolle, D.; Gralnick, J. A. Modularity of the Mtr respiratory pathway of Shewanella oneidensis strain MR-1. Mol. Microbiol. 2010, 77, 995–1008.
White, G. F.; Shi, Z.; Shi, L.; Wang, Z. M.; Dohnalkova, A. C.; Marshall, M. J.; Fredrickson, J. K.; Zachara, J. M.; Butt, J. N.; Richardson, D. J. et al. Rapid electron exchange between surface-exposed bacterial cytochromes and Fe(Ⅲ) minerals. Proc. Natl. Acad. Sci. USA 2013, 110, 6346–6351.
Edwards, M. J.; White, G. F.; Lockwood, C. W.; Lawes, M. C.; Martel, A.; Harris, G.; Scott, D. J.; Richardson, D. J.; Butt, J. N.; Clarke, T. A. Structural modeling of an outer membrane electron conduit from a metal-reducing bacterium suggests electron transfer via periplasmic redox partners. J. Biol. Chem. 2018, 293, 8103–8112.
Blumberger, J. Electron transfer and transport through multi-heme proteins: Recent progress and future directions. Curr. Opin. Chem. Biol. 2018, 47, 24–31.
Lovley, D. R. Live wires: Direct extracellular electron exchange for bioenergy and the bioremediation of energy-related contamination. Energy Environ. Sci. 2011, 4, 4896–4906.
Summers, Z. M.; Fogarty, H. E.; Leang, C.; Franks, A. E.; Malvankar, N. S.; Lovley, D. R. Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria. Science 2010, 330, 1413–1415.
Pirbadian, S.; Barchinger, S. E.; Leung, K. M.; Byun, H. S.; Jangir, Y.; Bouhenni, R. A.; Reed, S. B.; Romine, M. F.; Saffarini, D. A.; Shi, L. et al. Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components. Proc. Natl. Acad. Sci. USA 2014, 111, 12883–12888.
Gorgel, M.; Ulstrup, J. J.; Bøggild, A.; Jones, N. C.; Hoffmann, S. V.; Nissen, P.; Boesen, T. High-resolution structure of a type IV pilin from the metal-reducing bacterium Shewanella oneidensis. BMC Struct. Biol. 2015, 15, 4.
Gorby, Y. A.; Yanina, S.; McLean, J. S.; Rosso, K. M.; Moyles, D.; Dohnalkova, A.; Beveridge, T. J.; Chang, I. S.; Kim, B. H.; Kim, K. S. et al. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc. Natl. Acad. Sci. USA 2006, 103, 11358–11363.
Sure, S.; Torriero, A. A. J.; Gaur, A.; Li, L. H.; Chen, Y.; Tripathi, C.; Adholeya, A.; Ackland, M. L.; Kochar, M. Inquisition of Microcystis aeruginosa and Synechocystis nanowires: Characterization and modelling. Antonie van Leeuwenhoek 2015, 108, 1213–1225.
Wang, F. B.; Gu, Y. Q.; O'Brien, J. P.; Yi, S. M.; Yalcin, S. E.; Srikanth, V.; Shen, C.; Vu, D.; Ing, N. L.; Hochbaum, A. I. et al. Structure of microbial nanowires reveals stacked hemes that transport electrons over micrometers. Cell 2019, 177, 361–369. e10.
Reguera, G.; McCarthy, K. D.; Mehta, T.; Nicoll, J. S.; Tuominen, M. T.; Lovley, D. R. Extracellular electron transfer via microbial nanowires. Nature 2005, 435, 1098–1101.
Vargas, M.; Malvankar, N. S.; Tremblay, P. L.; Leang, C.; Smith, J. A.; Patel, P.; Synoeyenbos-West, O.; Nevin, K. P.; Lovley, D. R. Aromatic amino acids required for pili conductivity and long-range extracellular electron transport in Geobacter sulfurreducens. MBio 2013, 4, e00105-13.
Tan, Y.; Adhikari, R. Y.; Malvankar, N. S.; Pi, S.; Ward, J. E.; Woodard, T. L.; Nevin, K. P.; Xia, Q. F.; Tuominen, M. T.; Lovley, D. R. Synthetic biological protein nanowires with high conductivity. Small 2016, 12, 4481–4485.
Feliciano, G. T.; Steidl, R. J.; Reguera, G. Structural and functional insights into the conductive pili of Geobacter sulfurreducens revealed in molecular dynamics simulations. Phys. Chem. Chem. Phys. 2015, 17, 22217–22226.
Lampa-Pastirk, S.; Veazey, J. P.; Walsh, K. A.; Feliciano, G. T.; Steidl, R. J.; Tessmer, S. H.; Reguera, G. Thermally activated charge transport in microbial protein nanowires. Sci. Rep. 2016, 6, 23517.
Malvankar, N. S.; Vargas, M.; Nevin, K.; Tremblay, P. L.; Evans-Lutterodt, K.; Nykypanchuk, D.; Martz, E.; Tuominen, M. T.; Lovley, D. R. Structural basis for metallic-like conductivity in microbial nanowires. MBio 2015, 6, e00084.
Xiao, K.; Malvankar, N. S.; Shu, C. J.; Martz, E.; Lovley, D. R.; Sun, X. Low energy atomic models suggesting a pilus structure that could account for electrical conductivity of Geobacter sulfurreducens pili. Sci. Rep. 2016, 6, 23385.
Richter, L. V.; Sandler, S. J.; Weis, R. M. Two isoforms of Geobacter sulfurreducens PilA have distinct roles in pilus biogenesis, cytochrome localization, extracellular electron transfer, and biofilm formation. J. Bacteriol. 2012, 194, 2551–2563.
Marsili, E.; Baron, D. B.; Shikhare, I. D.; Coursolle, D.; Gralnick, J. A.; Bond, D. R. Shewanella secretes flavins that mediate extracellular electron transfer. Proc. Natl. Acad. Sci. USA 2008, 105, 3968–3973.
Kotloski, N. J.; Gralnick, J. A. Flavin electron shuttles dominate extracellular electron transfer by Shewanella oneidensis. MBio 2013, 4, e00553-12.
Yang, Y.; Ding, Y. Z.; Hu, Y. D.; Cao, B.; Rice, S. A.; Kjelleberg, S.; Song, H. Enhancing bidirectional electron transfer of Shewanella oneidensis by a synthetic flavin pathway. ACS Synth. Biol. 2015, 4, 815–823.
Coursolle, D.; Baron, D. B.; Bond, D. R.; Gralnick, J. A. The Mtr respiratory pathway is essential for reducing flavins and electrodes in Shewanella oneidensis. J. Bacteriol. 2010, 192, 467–474.
Hasan, K.; Bekir Yildiz, H.; Sperling, E.; Conghaile, P. Ó.; Packer, M. A.; Leech, D.; Hägerhäll, C.; Gorton, L. Photo-electrochemical communication between cyanobacteria (Leptolyngbia sp. ) and osmium redox polymer modified electrodes. Phys. Chem. Chem. Phys. 2014, 16, 24676–24680.
Bombelli, P.; Bradley, R. W.; Scott, A. M.; Philips, A. J.; McCormick, A. J.; Cruz, S. M.; Anderson, A.; Yunus, K.; Bendall, D. S.; Cameron, P. J. et al. Quantitative analysis of the factors limiting solar power transduction by Synechocystis sp. PCC 6803 in biological photovoltaic devices. Energy Environ. Sci. 2011, 4, 4690–4698.
Zhao, C. E.; Chen, J.; Ding, Y. Z.; Wang, V. B.; Bao, B. Q.; Kjelleberg, S.; Cao, B.; Loo, S. C. J.; Wang, L. H.; Huang, W. et al. Chemically functionalized conjugated oligoelectrolyte nanoparticles for enhancement of current generation in microbial fuel cells. ACS Appl. Mater. Interfaces 2015, 7, 14501–14505.
Yan, H. J.; Catania, C.; Bazan, G. C. Membrane-intercalating conjugated oligoelectrolytes: Impact on bioelectrochemical systems. Adv. Mater. 2015, 27, 2958–2973.
Hou, H. J.; Chen, X. F.; Thomas, A. W.; Catania, C.; Kirchhofer, N. D.; Garner, L. E.; Han, A.; Bazan, G. C. Conjugated oligoelectrolytes increase power generation in E. coli microbial fuel cells. Adv. Mater. 2013, 25, 1593–1597.
Kirchhofer, N. D.; Chen, X. F.; Marsili, E.; Sumner, J. J.; Dahlquist, F. W.; Bazan, G. C. The conjugated oligoelectrolyte DSSN+ enables exceptional coulombic efficiency via direct electron transfer for anode-respiring Shewanella oneidensis MR-1—A mechanistic study. Phys. Chem. Chem. Phys. 2014, 16, 20436–20443.
Wang, V. B.; Kirchhofer, N. D.; Chen, X. F.; Tan, M. Y. L.; Sivakumar, K.; Cao, B.; Zhang, Q. C.; Kjelleberg, S.; Bazan, G. C.; Loo, S. C. J. et al. Comparison of flavins and a conjugated oligoelectrolyte in stimulating extracellular electron transport from Shewanella oneidensis MR-1. Electrochem. Commun. 2014, 41, 55–58.
Wang, V. B.; Du, J.; Chen, X. F.; Thomas, A. W.; Kirchhofer, N. D.; Garner, L. E.; Maw, M. T.; Poh, W. H.; Hinks, J.; Wuertz, S. et al. Improving charge collection in Escherichia coli–carbon electrode devices with conjugated oligoelectrolytes. Phys. Chem. Chem. Phys. 2013, 15, 5867–5872.
Logan, B. E.; Regan, J. M. Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol. 2006, 14, 512–518.
Zou, Y. J.; Pisciotta, J.; Billmyre, R. B.; Baskakov, I. V.; Photosynthetic microbial fuel cells with positive light response. Biotechnol. Bioeng. 2009, 104, 939–946.
Schuergers, N.; Werlang, C.; Ajo-Franklin, C. M.; Boghossian, A. A. A synthetic biology approach to engineering living photovoltaics. Energy Environ. Sci. 2017, 10, 1102–1115.
Saper, G.; Kallmann, D.; Conzuelo, F.; Zhao, F. Y.; Tóth, T. N.; Liveanu, V.; Meir, S.; Szymanski, J.; Aharoni, A.; Schuhmann, W. et al. Live cyanobacteria produce photocurrent and hydrogen using both the respiratory and photosynthetic systems. Nat. Commun. 2018, 9, 2168.
Chaudhuri, S. K.; Lovley, D. R. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat. Biotechnol. 2003, 21, 1229–1232.
Scott, K.; Rimbu, G. A.; Katuri, K. P.; Prasad, K. K.; Head, I. M. Application of modified carbon anodes in microbial fuel cells. Process Saf. Environ. Prot. 2007, 85, 481–488.
Yu, Y. Y.; Guo, C. X.; Yong, Y. C.; Li, C. M.; Song, H. Nitrogen doped carbon nanoparticles enhanced extracellular electron transfer for high- performance microbial fuel cells anode. Chemosphere 2015, 140, 26–33.
Logan, B. E. Exoelectrogenic bacteria that power microbial fuel cells. Nat. Rev. Microbiol. 2009, 7, 375–381.
Borole, A. P.; Aaron, D.; Hamilton, C. Y.; Tsouris, C. Understanding long-term changes in microbial fuel cell performance using electrochemical impedance spectroscopy. Environ. Sci. Technol. 2010, 44, 2740–2745.
Hidalgo, D.; Tommasi, T.; Velayutham, K.; Ruggeri, B. Long term testing of microbial fuel cells: Comparison of different anode materials. Bioresour. Technol. 2016, 219, 37–44.
Gajda, I.; Greenman, J.; Santoro, C.; Serov, A.; Melhuish, C.; Atanassov, P.; Ieropoulos, I. A. Improved power and long term performance of microbial fuel cell with Fe-N-C catalyst in air-breathing cathode. Energy (Oxf) 2018, 144, 1073–1079.
Marsili, E.; Rollefson, J. B.; Baron, D. B.; Hozalski, R. M.; Bond, D. R. Microbial biofilm voltammetry: Direct electrochemical characterization of catalytic electrode-attached biofilms. Appl. Environ. Microbiol. 2008, 74, 7329–7337.
Liu, Y.; Harnisch, F.; Fricke, K.; Schröder, U.; Climent, V.; Feliu, J. M. The study of electrochemically active microbial biofilms on different carbon- based anode materials in microbial fuel cells. Biosens. Bioelectron. 2010, 25, 2167–2171.
Deng, L.; Guo, S. J.; Liu, Z. J.; Zhou, M.; Li, D.; Liu, L.; Li, G. P.; Wang, E. K.; Dong, S. J. To boost c-type cytochrome wire efficiency of electrogenic bacteria with Fe3O4/Au nanocomposites. Chem. Commun. 2010, 46, 7172–7174.
Huang, Y. X.; Liu, X. W.; Xie, J. F.; Sheng, G. P.; Wang, G. Y.; Zhang, Y. Y.; Xu, A. W.; Yu, H. Q. Graphene oxide nanoribbons greatly enhance extracellular electron transfer in bio-electrochemical systems. Chem. Commun. 2011, 47, 5795–5797.
Zou, L.; Qiao, Y.; Wu, X. S.; Li, C. M. Tailoring hierarchically porous graphene architecture by carbon nanotube to accelerate extracellular electron transfer of anodic biofilm in microbial fuel cells. J. Power Sources 2016, 328, 143–150.
Tanaka, K.; Tamamushi, R.; Ogawa, T. Bioelectrochemical fuel-cells operated by the cyanobacterium, Anabaena variabilis. J. Chem. Technol. Biotechnol. Biotechnol. 1985, 35, 191–197.
Yokoo, R.; Hood, R. D.; Savage, D. F. Live-cell imaging of cyanobacteria. Photosynth. Res. 2015, 126, 33–46.