Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Crystalline Ge is a highly active anode material for Li storage but inactive for Na storage because of high diffusion barrier. By in-situ Raman spectrum, we explore that the Na could reversibly alloy/dealloy with the amorphous Ge, but does not with the crystalline Ge. Herein, the amorphous Ge is fabricated by an acid-etching Zintl phase Mg2Ge route at room temperature, which shows a mesoporous architecture with a Brunauer-Emmett-Teller (BET) surface area of 29.9 m2·g-1 and a Barrett-Joyner-Halenda (BJH) average pore diameter of 7.6 nm. This mesoporous architecture would enhance the Na-ion/electron diffusion rate and buffer the volume expansion. As a result, the as-prepared amorphous Ge shows superior Na-ion storage performance including high reversible capacity over 550 mA·h·g-1 at 0.2 C after 50 cycles, good rate capability with a capacity of 273 mA·h·g-1 maintained at 5.0 C, and long-term cycling stability with capacities of 450 mA·h·g-1 at 0.4 C after 200 cycles. For the K-ion storage, the amorphous Ge is also more active than the crystalline counter and maintains a capacity of 210 mA·h·g-1 after 100 cycles at 0.2 C.
Kundu, D.; Talaie, E.; Duffort, V.; Nazar, L. F. The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angew. Chem., Int. Ed. 2015, 54, 3431-3448.
Yadegari, H.; Sun, Q.; Sun, X. L. Sodium-oxygen batteries: A comparative review from chemical and electrochemical fundamentals to future perspective. Adv. Mater. 2016, 28, 7065-7093.
Chevrier, V. L.; Ceder, G. Challenges for Na-ion negative electrodes. J. Electrochem. Soc. 2011, 158, A1011-A1014.
You, Y.; Yao, H. R.; Xin, S.; Yin, Y. X.; Zuo, T. T.; Yang, C. P.; Guo, Y. G.; Cui, Y.; Wan, L. J.; Goodenough, J. B. Subzero-temperature cathode for a sodium-ion battery. Adv. Mater. 2016, 28, 7243-7248.
Balogun, M. S.; Luo, Y.; Qiu, W. T.; Liu, P.; Tong, Y. X. A review of carbon materials and their composites with alloy metals for sodium ion battery anodes. Carbon 2016, 98, 162-178.
Wang, L. P.; Yu, L. H.; Wang, X.; Srinivasan, M.; Xu, Z. J. Recent developments in electrode materials for sodium-ion batteries. J. Mater. Chem. A 2015, 3, 9353-9378.
Park, Y. U.; Seo, D. H.; Kwon, H. S.; Kim, B.; Kim, J.; Kim, H.; Kim, I.; Yoo, H. I.; Kang, K. A new high-energy cathode for a Na-ion battery with ultrahigh stability. J. Am. Chem. Soc. 2013, 135, 13870-13878.
Deng, M. X.; Li, S. J.; Hong, W. W.; Jiang, Y. L.; Xu, W.; Shuai, H. L.; Zou, G. Q.; Hu, Y. C.; Hou, H. S.; Wang, W. L. et al. Octahedral Sb2O3 as high-performance anode for lithium and sodium storage. Mater. Chem. Phys. 2019, 223, 46-52.
Hou, H. S.; Banks, C. E.; Jing, M. J.; Zhang, Y.; Ji, X. B. Carbon quantum dots and their derivative 3D porous carbon frameworks for sodium-ion batteries with ultralong cycle life. Adv. Mater. 2015, 27, 7861-7866.
Kim, H.; Kim, H.; Ding, Z.; Lee, M. H.; Lim, K.; Yoon, G.; Kang, K. Recent progress in electrode materials for sodium-ion batteries. Adv. Energy Mater. 2016, 6, 1600943.
Jung, S. C.; Jung, D. S.; Choi, J. W.; Han, Y. K. Atom-level understanding of the sodiation process in silicon anode material. J. Phys. Chem. Lett. 2014, 5, 1283-1288.
Darwiche, A.; Marino, C.; Sougrati, M. T.; Fraisse, B.; Stievano, L.; Monconduit, L. Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: An unexpected electrochemical mechanism. J. Am. Chem. Soc. 2012, 134, 20805-20811.
Yue, C.; Yu, Y. J.; Sun, S. B.; He, X.; Chen, B. B.; Lin, W.; Xu, B. B.; Zheng, M. S.; Wu, S. T.; Li, J. et al. High performance 3D Si/Ge nanorods array anode buffered by TiN/Ti interlayer for sodium-ion batteries. Adv. Funct. Mater. 2015, 25, 1386-1392.
Kohandehghan, A.; Cui, K.; Kupsta, M.; Ding, J.; Memarzadeh Lotfabad, E.; Kalisvaart, W. P.; Mitlin, D. Activation with Li enables facile sodium storage in germanium. Nano Lett. 2014, 14, 5873-5882.
Lu, X. T.; Adkins, E. R.; He, Y.; Zhong, L.; Luo, L. L.; Mao, S. X.; Wang, C. M.; Korgel, B. A. Germanium as a sodium Ion battery material: In situ TEM reveals fast sodiation kinetics with high capacity. Chem. Mater. 2016, 28, 1236-1242.
Kornowski, A.; Giersig, M.; Vogel, R.; Chemseddine, A.; Weller, H. Nanometer-sized colloidal germanium particles: Wet-chemical synthesis, laser-induced crystallization and particle growth. Adv. Mater. 1993, 5, 634-636.
Chiu, H. W.; Chervin, C. N.; Kauzlarich, S. M. Phase changes in Ge nanoparticles. Chem. Mater. 2005, 17, 4858-4864.
Lee, H.; Kim, M. G.; Choi, C. H.; Sun, Y. K.; Yoon, C. S.; Cho, J. Surface- stabilized amorphous germanium nanoparticles for lithium-storage material. J. Phys. Chem. B 2005, 109, 20719-20723.
Heath, J. R.; Shiang, J. J.; Alivisatos, A. P. Germanium quantum dots: Optical properties and synthesis. J. Chem. Phys. 1994, 101, 1607-1615.
Sun, X. L.; Si, W. P.; Xi, L. X.; Liu, B.; Liu, X. J.; Yan, C. L.; Schmidt, O. G. In situ-formed, amorphous, oxygen-enabled germanium anode with robust cycle life for reversible lithium storage. ChemElectroChem 2015, 2, 737-742.
Armatas, G. S.; Kanatzidis, M. G. Hexagonal mesoporous germanium. Science 2006, 313, 817-820.
Taylor, B. R.; Kauzlarich, S. M.; Lee, H. W. H.; Delgado, G. R. Solution synthesis of germanium nanocrystals demonstrating quantum confinement. Chem. Mater. 1998, 10, 22-24.
Taylor, B. R.; Kauzlarich, S. M.; Delgado, G. R.; Lee, H. W. H. Solution synthesis and characterization of quantum confined Ge nanoparticles. Chem. Mater. 1999, 11, 2493-2500.
Bianco, E.; Butler, S.; Jiang, S. S.; Restrepo, O. D.; Windl, W.; Goldberger, J. E. Stability and exfoliation of germanane: A germanium graphane analogue. ACS Nano 2013, 7, 4414-4421.
Serino, A. C.; Ko, J. S.; Yeung, M. T.; Schwartz, J. J.; Kang, C. B.; Tolbert, S. H.; Kaner, R. B.; Dunn, B. S.; Weiss, P. S. Lithium-ion insertion properties of solution-exfoliated germanane. ACS Nano 2017, 11, 7995-8001.
Arguilla, M. Q.; Jiang, S. S.; Chitara, B.; Goldberger, J. E. Synthesis and stability of two-dimensional Ge/Sn graphane alloys. Chem. Mater. 2014, 26, 6941-6946.
Ma, X. C.; Wu, F. Y.; Kauzlarich, S. M. Alkyl-terminated crystalline Ge nanoparticles prepared from NaGe: Synthesis, functionalization and optical properties. J. Solid State Chem. 2008, 181, 1628-1633.
Vilcarromero, J.; Marques, F. C. XPS study of the chemical bonding in hydrogenated amorphous germanium-carbon alloys. Appl. Phys. A 2000, 70, 581-585.
Legrain, F.; Malyi, O. I.; Manzhos, S. Comparative computational study of the diffusion of Li, Na, and Mg in silicon including the effect of vibrations. Solid State Ionics 2013, 253, 157-163.
Zhang, K.; Hu, Z.; Liu, X.; Tao, Z. L.; Chen, J. FeSe2 microspheres as a high-performance anode material for Na-ion batteries. Adv. Mater. 2015, 27, 3305-3309.
Wu, T. J.; Jing, M. J.; Yang, L.; Zou, G. Q.; Hou, H. S.; Zhang, Y.; Zhang, Y.; Cao, X. Y.; Ji, X. B. Controllable chain-length for covalent sulfur-carbon materials enabling stable and high-capacity sodium storage. Adv. Energy Mater. 2019, 9, 1803478.
Augustyn, V.; Come, J.; Lowe, M. A.; Kim, J. W.; Taberna, P. L.; Tolbert, S. H.; Abruña, H. D.; Simon, P.; Dunn, B. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 2013, 12, 518-522.
Jian, Z. L.; Luo, W.; Ji, X. L. Carbon electrodes for K-ion batteries. J. Am. Chem. Soc. 2015, 137, 11566-11569.
Huang, K. S.; Xing, Z.; Wang, L. C.; Wu, X.; Zhao, W.; Qi, X. J.; Wang, H.; Ju, Z. C. Direct synthesis of 3D hierarchically porous carbon/Sn composites via in situ generated NaCl crystals as templates for potassium-ion batteries anode. J. Mater. Chem. A 2018, 6, 434-442.
Sultana, I.; Rahman, M.; Ramireddy, T.; Chen, Y.; Glushenkov, A. M. High capacity potassium-ion battery anodes based on black phosphorus. J. Mater. Chem. A 2017, 5, 23506-23512.
McCulloch, W. D.; Ren, X. D.; Yu, M. Z.; Huang, Z. J.; Wu, Y. Y. Potassium-ion oxygen battery based on a high capacity antimony anode. ACS Appl. Mater. Interfaces 2015, 7, 26158-26166.
Lei, K. X.; Wang, C. C.; Liu, L. J.; Luo, Y. W.; Mu, C. N.; Li, F. J.; Chen, J. A porous network of bismuth used as the anode material for high-energy- density potassium-ion batteries. Angew. Chemi. 2018, 130, 4777-4781.
Zhang, W. C.; Mao, J. F.; Li, S. A.; Chen, Z. X.; Guo, Z. P. Phosphorus-based alloy materials for advanced potassium-ion battery anode. J. Am. Chem. Soc. 2017, 139, 3316-3319.
Sultana, I.; Rahman, M.; Chen, Y.; Glushenkov, A. M. Potassium-ion battery anode materials operating through the alloying-dealloying reaction mechanism. Adv. Funct. Mater. 2018, 28, 1703857.
Jian, Z. L.; Hwang, S.; Li, Z. F.; Hernandez, A. S.; Wang, X. F.; Xing, Z. Y.; Su, D.; Ji, X. L. Hard-soft composite carbon as a long-cycling and high-rate anode for potassium-ion batteries. Adv. Funct. Mater. 2017, 27, 1700324.
Ju, Z. C.; Li, P. Z.; Ma, G. Y.; Xing, Z.; Zhuang, Q. C.; Qian, Y. T. Few layer nitrogen-doped graphene with highly reversible potassium storage. Energy Storage Mater. 2018, 11, 38-46.
Gao, H.; Zhou, T. F.; Zheng, Y.; Zhang, Q.; Liu, Y. Q.; Chen, J.; Liu, H. K.; Guo, Z. P. CoS quantum dot nanoclusters for high-energy potassium-ion batteries. Adv. Funct. Mater. 2017, 27, 1702634.
Zhang, Y.; Yang, L.; Tian, Y.; Li, L.; Li, J. Y.; Qiu, T. Y.; Zou, G. Q.; Hou, H. S.; Ji, X. B. Honeycomb hard carbon derived from carbon quantum dots as anode material for K-ion batteries. Mater. Chem. Phys. 2019, 229, 303-309.
Huang, Z.; Chen, Z.; Ding, S. S.; Chen, C. M.; Zhang, M. Enhanced conductivity and properties of SnO2-graphene-carbon nanofibers for potassium-ion batteries by graphene modification. Mater. Lett. 2018, 219, 19-22.
Sultana, I.; Ramireddy, T.; Rahman, M.; Chen, Y.; Glushenkov, A. M. Tin- based composite anodes for potassium-ion batteries. Chem. Commun. 2016, 52, 9279-9282.