AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Improving the cycle stability of FeCl3-graphite intercalation compounds by polar Fe2O3 trapping in lithium-ion batteries

Zheng Li1,2,§Chengzhi Zhang1,2,§Fei Han1,2( )Fuquan Zhang1,2Dianwu Zhou3Shaohua Xu2Hongbo Liu1,2Xuanke Li1,2Jinshui Liu1,2( )
College of Materials Science and Engineering,Hunan University,Changsha,410082,China;
Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology,Hunan University,Changsha,410082,China;
State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body,Hunan University,Changsha,410082,China;

§ Zheng Li and Chengzhi Zhang contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

FeCl3-intercalated graphite intercalation compounds (GICs) with high reversible capacity and high volumetric energy density are attractive anode material alternatives of commercial graphite. However, the rapid capacity decay, which was induced by chloride dissolution and shuttling issues, hindered their practical application. To address this problem, here, we introduce flake-like Fe2O3 species with inherently polar surface on the edge of FeCl3-intercalated GICs through microwave-assisted transformation of a fraction of FeCl3 component. Theoretical simulations and physical/electrochemical studies demonstrate that the introduced Fe2O3 component can afford sufficient polar active sites for chemically bonding the soluble FeCl3 and LiCl species based on the polar-polar interaction mechanism, further inhibiting the outward diffusion of the chlorides and immobilizing them within the GIC material. In a lithium ion cell, the FeCl3-intercalated GIC with a suitable Fe2O3 content shows remarkably improved cycling stability with a high reversible capacity of 1, 041 mAh∙g-1 at a current density of 200 mA∙g-1. Capacity retention of 91% is achieved at a high current density of 1, 000 mA∙g-1 over 300 cycles. This work opens up the new prospect for immobilizing chlorides by introducing inorganic species in GIC for long-cycle electrochemical batteries.

Electronic Supplementary Material

Download File(s)
12274_2019_2444_MOESM1_ESM.pdf (4.3 MB)

References

1

Goodenough, J. B. Evolution of strategies for modern rechargeable batteries. Acc. Chem. Res. 2013, 46, 1053-1061.

2

Goodenough, J. B. Energy storage materials: A perspective. Energy Storage Mater. 2015, 1, 158-161.

3

Gong, Y. J.; Yang, S. B.; Liu, Z.; Ma, L. L.; Vajtai, R.; Ajayan, P. M. Graphene-network-backboned architectures for high-performance lithium storage. Adv. Mater. 2013, 25, 3979-3984.

4

Kong, D. B.; Li, X. L.; Zhang, Y. B.; Hai, X.; Wang, B.; Qiu, X. Y.; Song, Q.; Yang, Q. H.; Zhi, L. J. Encapsulating V2O5 into carbon nanotubes enables the synthesis of flexible high-performance lithium ion batteries. Energy Environ. Sci. 2016, 9, 906-911.

5

Zhang, C.; Lv, W.; Tao, Y.; Yang, Q. H. Towards superior volumetric performance: Design and preparation of novel carbon materials for energy storage. Energy Environ. Sci. 2015, 8, 1390-1403.

6

Li, Z. J.; Kong, D. B.; Zhou, G. M.; Wu, S. D.; Lv, W.; Luo, C.; Shao, J. J.; Li, B. H.; Kang, F. Y.; Yang, Q. H. Twin-functional graphene oxide: Compacting with Fe2O3 into a high volumetric capacity anode for lithium ion battery. Energy Storage Mater. 2017, 6, 98-103.

7

Xu, Y.; Tao, Y.; Li, H.; Zhang, C.; Liu, D. H.; Qi, C. S.; Luo, J. Y.; Kang, F. Y.; Yang, Q. H. Dual electronic-ionic conductivity of pseudo-capacitive filler enables high volumetric capacitance from dense graphene micro- particles. Nano Energy 2017, 36, 349-355.

8

Han, J. W.; Kong, D. B.; Lv, W.; Tang, D. M.; Han, D. L.; Zhang, C.; Liu, D. H.; Xiao, Z. C.; Zhang, X. H.; Xiao, J. et al. Caging tin oxide in three- dimensional graphene networks for superior volumetric lithium storage. Nat. Commun. 2018, 9, 402.

9

Yin, H.; Li, Q. W.; Cao, M. L.; Zhang, W.; Zhao, H.; Li, C.; Huo, K. F.; Zhu, M. Q. Nanosized-bismuth-embedded 1D carbon nanofibers as high- performance anodes for lithium-ion and sodium-ion batteries. Nano Res. 2017, 10, 2156-2167.

10

Yin, H.; Yu, X. X.; Yu, Y. W.; Cao, M. L.; Zhao, H.; Li, C.; Zhu, M. Q. Tellurium nanotubes grown on carbon fiber cloth as cathode for flexible all-solid-state lithium-tellurium batteries. Electrochim. Acta 2018, 282, 870-876.

11

Lin, W. Z.; Lian, Y. P.; Zeng, G.; Chen, Y. Y.; Wen, Z. H.; Yang, H. H. A fast synthetic strategy for high-quality atomically thin antimonene with ultrahigh sonication power. Nano Res. 2018, 11, 5968-5977.

12

Yin, H.; Cao, M. L.; Yu, X. X.; Zhao, H.; Shen, Y.; Li, C.; Zhu, M. Q. Self-standing Bi2O3 nanoparticles/carbon nanofiber hybrid films as a binder-free anode for flexible sodium-ion batteries. Mater. Chem. Front. 2017, 1, 1615-1621.

13

Yin, H.; Yu, X. X.; Li, Q. W.; Cao, M. L.; Zhang, W.; Zhao, H.; Zhu, M. Q. Hollow porous CuO/C composite microcubes derived from metal-organic framework templates for highly reversible lithium-ion batteries. J. Alloys Compd. 2017, 706, 97-102.

14

Luo, J. S.; Xia, X. H.; Luo, Y. S.; Guan, C.; Liu, J. L.; Qi, X. Y.; Ng, C. F.; Yu, T.; Zhang, H.; Fan, H. J. Rationally designed hierarchical TiO2@Fe2O3 hollow nanostructures for improved lithium ion storage. Adv. Energy Mater. 2013, 3, 737-743.

15

Yin, H.; Liu, Y.; Yu, N.; Qu, H. Q.; Liu, Z. T.; Jiang, R. Z.; Li, C.; Zhu, M. Q. Graphene-like MoS2 nanosheets on carbon fabrics as high-performance binder-free electrodes for supercapacitors and Li-ion batteries. ACS Omega 2018, 3, 17466-17473.

16

Sun, M.; Liu, H. J.; Qu, J. H.; Li, J. H. Earth-rich transition metal phosphide for energy conversion and storage. Adv. Energy Mater. 2016, 6, 1600087.

17

Yin, H.; Qu, H. Q.; Liu, Z. T.; Jiang, R. Z.; Li, C.; Zhu, M. Q. Long cycle life and high rate capability of three dimensional CoSe2 grain-attached carbon nanofibers for flexible sodium-ion batteries. Nano Energy 2019, 58, 715-723.

18

Zhang, C. Z.; Ma, J. M.; Han, F.; Liu, H. B.; Zhang, F. Q.; Fan, C. L.; Liu, J. S.; Li, X. K. Strong anchoring effect of ferric chloride-graphite intercalation compounds (FeCl3-GICs) with tailored epoxy groups for high-capacity and stable lithium storage. J. Mater. Chem. A 2018, 6, 17982-17993.

19

Wu, F. X.; Yushin, G. Conversion cathodes for rechargeable lithium and lithium-ion batteries. Energy Environ. Sci. 2017, 10, 435-459.

20

Peng, F. X.; Meng, F. B.; Guo, Y. F.; Wang, H. G.; Huang, F.; Zhou, Z. W. Intercalating hybrids of sandwich-like Fe3O4-graphite: Synthesis and their synergistic enhancement of microwave absorption. ACS Sustainable Chem. Eng. 2018, 6, 16744-16753.

21

Qi, X.; Qu, J.; Zhang, H. B.; Yang, D. Z.; Yu, Y. H.; Chi, C.; Yu, Z. Z. FeCl3 intercalated few-layer graphene for high lithium-ion storage performance. J. Mater. Chem. A 2015, 3, 15498-15504.

22

Luo, L.; Chung, S. H.; Asl, H. Y.; Manthiram, A. Long-life lithium-sulfur batteries with a bifunctional cathode substrate configured with boron carbide nanowires. Adv. Mater. 2018, 30, e1804149.

23

Wang, F.; Yi, J.; Wang, Y. G., Wang, C. X.; Wang, J. Q.; Xia, Y. Y. Graphite intercalation compounds (GICs): A new type of promising anode material for lithium-ion batteries. Adv. Energy Mater. 2014, 4, 1300600.

24

Wang, L. L.; Zhu, Y. C.; Guo, C.; Zhu, X. B.; Liang, J. W.; Qian, Y. T. Ferric chloride-graphite intercalation compounds as anode materials for Li-ion batteries. ChemSusChem 2014, 7, 87-91.

25

Wang, L. L.; Guo, C.; Zhu, Y. C.; Zhou, J. B.; Fan, L.; Qian, Y. T. A FeCl2-graphite sandwich composite with Cl doping in graphite layers: A new anode material for high-performance Li-ion batteries. Nanoscale 2014, 6, 14174-14179.

26

Chen, J.; Fan, X. L.; Ji, X.; Gao, T.; Hou, S.; Zhou, X. Q.; Wang, L. N.; Wang, F.; Yang, C. Y.; Chen, L. et al. Intercalation of Bi nanoparticles into graphite results in an ultra-fast and ultra-stable anode material for sodium- ion batteries. Energy Environ. Sci. 2018, 11, 1218-1225.

27

Peng, H. J.; Huang, J. Q.; Cheng, X. B.; Zhang, Q. Review on high-loading and high-energy lithium-sulfur batteries. Adv. Energy Mater. 2017, 7, 1700260.

28

Wang, X. W.; Yang, C. H.; Xiong, X. H.; Chen, G. L.; Huang, M. Z.; Wang, J. H.; Liu, Y.; Liu, M. L.; Huang, K. A robust sulfur host with dual lithium polysulfide immobilization mechanism for long cycle life and high capacity Li-S batteries. Energy Storage Mater. 2019, 16, 344-353.

29

Fang, R. P.; Zhao, S. Y.; Sun, Z. H.; Wang, D. W.; Cheng, H. M.; Li, F. More reliable lithium-sulfur batteries: Status, solutions and prospects. Adv. Mater. 2017, 29, 1606823.

30

Zhang, J.; Huang, H.; Bae, J.; Chung, S. H.; Zhang, W. K.; Manthiram, A.; Yu, G. H. Nanostructured host materials for trapping sulfur in rechargeable Li-S batteries: Structure design and interfacial chemistry. Small Methods 2018, 2, 1700279.

31

Wei Seh, Z.; Li, W. Y.; Cha, J. J.; Zheng, G. Y.; Yang, Y.; McDowell, M. T.; Hsu, P. C.; Cui, Y. Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries. Nat. Commun. 2013, 4, 1331.

32

Zhang, J. T.; Li, Z.; Chen, Y.; Gao, S. Y.; Lou, X. W. Nickel-iron layered double hydroxide hollow polyhedrons as a superior sulfur host for lithium- sulfur batteries. Angew. Chem., Int. Ed. 2018, 57, 10944-10948.

33

Kong, W. B.; Yan, L. J.; Luo, Y. F.; Wang, D. T.; Jiang, K. L.; Li, Q. Q.; Fan, S. S.; Wang, J. P. Ultrathin MnO2/graphene oxide/carbon nanotube interlayer as efficient polysulfide-trapping shield for high-performance Li-S batteries. Adv. Funct. Mater. 2017, 27, 1606663.

34

Chen, X.; Peng, H. J.; Zhang, R.; Hou, T. Z.; Huang, J. Q.; Li, B.; Zhang, Q. An analogous periodic law for strong anchoring of polysulfides on polar hosts in lithium sulfur batteries: S- or Li-binding on first-row transition- metal sulfides? ACS Energy Lett. 2017, 2, 795-801.

35

Ye, C.; Zhang, L.; Guo, C. X.; Li, D. D.; Vasileff, A.; Wang, H. H.; Qiao, S. Z. A 3D hybrid of chemically coupled nickel sulfide and hollow carbon spheres for high performance lithium-sulfur batteries. Adv. Funct. Mater. 2017, 27, 1702524.

36

Liu, X.; Huang, J. Q.; Zhang, Q.; Mai, L. Q. Nanostructured metal oxides and sulfides for lithium-sulfur batteries. Adv. Mater. 2017, 29, 1601759.

37

Dong, Y. F.; Zheng, S. H.; Qin, J. Q.; Zhao, X. J.; Shi, H. D.; Wang, X. H.; Chen, J.; Wu, Z. S. All-MXene-based integrated electrode constructed by Ti3C2 nanoribbon framework host and nanosheet interlayer for high-energy- density Li-S batteries. ACS Nano 2018, 12, 2381-2388.

38

Tang, H.; Li, W. L.; Pan, L. M.; Cullen, C. P.; Liu, Y.; Pakdel, A.; Long, D. H.; Yang, J.; McEvoy, N.; Duesberg, G. S. et al. In situ formed protective barrier enabled by sulfur@titanium carbide (MXene) ink for achieving high-capacity, long lifetime Li-S batteries. Adv. Sci. 2018, 5, 1800502.

39

Zhang, Q. F.; Wang, Y. P.; Seh, Z. W.; Fu, Z. H.; Zhang, R. F.; Cui, Y. Understanding the anchoring effect of two-dimensional layered materials for lithium-sulfur batteries. Nano Lett. 2015, 15, 3780-3786.

40

Zhang, H. Y.; Shen, W. C.; Wang, Z. D.; Zhang, F. Formation of iron chloride-graphite intercalation compounds in propylene carbonate by electrolysis. Carbon 1997, 35, 285-290.

41

Zhan, D.; Sun, L.; Ni, Z. H.; Liu, L.; Fan, X. F.; Wang, Y. Y.; Yu, T.; Lam, Y. M.; Huang, W.; Shen, Z. X. FeCl3-based few-layer graphene intercalation compounds: Single linear dispersion electronic band structure and strong charge transfer doping. Adv. Funct. Mater. 2010, 20, 3504-3509.

42

Zhao, W. J.; Tan, P. H.; Liu, J.; Ferrari, A. C. Intercalation of few-layer graphite flakes with FeCl3: Raman determination of Fermi level, layer by layer decoupling, and stability. J. Am. Chem. Soc. 2011, 133, 5941-5946.

43

Li, D. P.; Zhu, M.; Chen, L. N.; Chen, L.; Zhai, W.; Ai, Q.; Hou, G. M.; Sun, Q.; Liu, Y.; Liang, Z. et al. Sandwich-like FeCl3@C as high-performance anode materials for potassium-ion batteries. Adv. Mater. Interfaces 2018, 5, 1800606.

44

Li, H.; Tao, Y.; Zhang, C.; Liu, D. H.; Luo, J. Y.; Fan, W. C.; Xu, Y.; Li, Y. Z.; You, C. H.; Pan, Z. Z. et al. Dense graphene monolith for high volumetric energy density Li-S batteries. Adv. Energy Mater. 2018, 8, 1703438.

45

Zhang, J. X.; Zhao, X.; Yao, M. Y.; Tan, W. J.; Dong, J.; Zhang, Q. H. Microwave-assisted exfoliation strategy to boost the energy storage capability of carbon fibers for supercapacitors. J. Mater. Sci. 2018, 53, 11050-11061.

46

Zhao, W. X.; Ci, S. Q.; Hu, X.; Chen, J. X.; Wen, Z. H. Highly dispersed ultrasmall NiS2 nanoparticles in porous carbon nanofiber anodes for sodium ion batteries. Nanoscale 2019, 11, 4688-4695.

47

Luo, Y. S.; Luo, J. S.; Jiang, J.; Zhou, W. W.; Yang, H. P.; Qi, X. Y.; Zhang, H.; Fan, H. J.; Yu, D. Y. W.; Li, C. M. et al. Seed-assisted synthesis of highly ordered TiO2@α-Fe2O3 core/shell arrays on carbon textiles for lithium-ion battery applications. Energy Environ. Sci. 2012, 5, 6559-6566.

48

Yamashita, T.; Hayes, P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 2008, 254, 2441-2449.

49

Sun, Y. L.; Han, F.; Zhang, C. Z.; Zhang, F. Q.; Zhou, D. W.; Liu, H. B.; Fan, C. L.; Li, X. K.; Liu, J. S. FeCl3 intercalated microcrystalline graphite enables high volumetric capacity and good cycle stability for lithium-ion batteries. Energy Technol. 2019, 7, 1801091.

50

Sun, Z. H.; Zhang, J. Q.; Yin, L. C.; Hu, G. J.; Fang, R. P.; Cheng, H. M.; Li, F. Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries. Nat. Commun. 2017, 8, 14627.

51

Pang, Q.; Liang, X.; Kwok, C. Y.; Nazar, L. F. Advances in lithium-sulfur batteries based on multifunctional cathodes and electrolytes. Nat. Energy 2016, 1, 16132.

52

Billaud, J.; Bouville, F.; Magrini, T.; Villevieille, C.; Studart, A. R. Magnetically aligned graphite electrodes for high-rate performance Li-ion batteries. Nat. Energy 2016, 1, 16097.

Nano Research
Pages 1836-1844
Cite this article:
Li Z, Zhang C, Han F, et al. Improving the cycle stability of FeCl3-graphite intercalation compounds by polar Fe2O3 trapping in lithium-ion batteries. Nano Research, 2019, 12(8): 1836-1844. https://doi.org/10.1007/s12274-019-2444-2
Topics:

726

Views

41

Crossref

N/A

Web of Science

43

Scopus

5

CSCD

Altmetrics

Received: 14 March 2019
Revised: 23 April 2019
Accepted: 17 May 2019
Published: 04 June 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return