AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Large-area patterning of substrate-conformal MoS2 nano-trenches

Christian Martella1,2( )Luca Ortolani3( )Elena Cianci1Alessio Lamperti1Vittorio Morandi3Alessandro Molle1( )
IMM-CNR, via C. Olivetti 2,Agrate Brianza (MB),I-20864,Italy;
ISC-CNR, U.O.S. Sapienza,Roma,I-00185,Italy;
IMM-CNR, via Gobetti 101, Bologna (BO),I-40129,Italy;
Show Author Information

Graphical Abstract

Abstract

Within the class of two-dimensional materials, transition metal dichalcogenides (TMDs), are extremely appealing for a variety of technological applications. Moreover, the manipulation of the layered morphology at the nanoscale is a knob for further tailoring their physical and chemical properties towards target applications. Here, the combination of atomic layer deposition (ALD) and chemical vapour deposition (CVD) is presented as a general approach for the fabrication of TMD layers arranged in arbitrary geometry at the nanoscale. Indeed, following such all-chemical based approach, high-resolution electron microscopy shows the conformal growth of MoS2 to nano-trench pattern obtained in SiO2 substrates on large area. Growth is uniform not only in the flat region of the pattern but also at the hinges and throughout vertical faces, without rupture, all along the rectangular shape profile of the trenches. Furthermore, MoS2 bending dramatically affects the electron-phonon coupling as demonstrated by resonant Raman scattering. The proposed approach opens the door to the on-demand manipulation of the TMDs properties by large-scale substrate pattern design.

Electronic Supplementary Material

Download File(s)
12274_2019_2446_MOESM1_ESM.pdf (3.5 MB)

References

1

Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S. K.; Colombo, L. Electronics based on two- dimensional materials. Nat. Nanotechnol. 2014, 9, 768-779.

2

Koppens, F. H. L.; Mueller, T.; Avouris, P.; Ferrari, A. C.; Vitiello, M. S.; Polini, M. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 2014, 9, 780-793.

3

Eda, G.; Maier, S. A. Two-dimensional crystals: Managing light for optoelectronics. ACS Nano 2013, 7, 5660-5665.

4

Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263-275.

5

Mak, K. F.; Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics 2016, 10, 216-226.

6

Castellanos-Gomez, A.; Roldán, R.; Cappelluti, E.; Buscema, M.; Guinea, F.; van der Zant, H. S. J.; Steele, G. A. Local strain engineering in atomically thin MoS2. Nano Lett. 2013, 13, 5361-5366.

7

Martella, C.; Mennucci, C.; Cinquanta, E.; Lamperti, A.; Cappelluti, E.; de Mongeot, F. B.; Molle, A. Anisotropic MoS2 nanosheets grown on self- organized nanopatterned substrates. Adv. Mater. 2017, 29, 1605785.

8

Camellini, A.; Mennucci, C.; Cinquanta, E.; Martella, C.; Mazzanti, A.; Lamperti, A.; Molle, A.; de Mongeot, F. B.; Della Valle, G.; Zavelani-Rossi, M. Ultrafast anisotropic exciton dynamics in nanopatterned MoS2 sheets. ACS Photonics 2018, 5, 3363-3371.

9

Branny, A.; Kumar, S.; Proux, R.; Gerardot, B. D. Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor. Nat. Commun. 2017, 8, 15053.

10

Feng, J.; Qian, X. F.; Huang, C. W.; Li, J. Strain-engineered artificial atom as a broad-spectrum solar energy funnel. Nat. Photonics 2012, 6, 866-872.

11

Martella, C.; Mennucci, C.; Lamperti, A.; Cappelluti, E.; de Mongeot, F. B.; Molle, A. Designer shape anisotropy on transition-metal-dichalcogenide nanosheets. Adv. Mater. 2018, 30, 1705615.

12

Scalise, E.; Houssa, M.; Pourtois, G.; Afanas'ev, V.; Stesmans, A. Strain- induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2. Nano Res. 2012, 5, 43-48.

13

Lin, Z.; Carvalho, B. R.; Kahn, E.; Lv, R. T.; Rao, R.; Terrones, H.; Pimenta, M. A.; Terrones, M. Defect engineering of two-dimensional transition metal dichalcogenides. 2D Mater. 2016, 3, 022002.

14

Chaste, J.; Missaoui, A.; Huang, S.; Henck, H.; Ben Aziza, Z.; Ferlazzo, L.; Naylor, C.; Balan, A.; Johnson, A. T. C.; Braive, R. et al. Intrinsic properties of suspended MoS2 on SiO2/Si pillar arrays for nanomechanics and optics. ACS Nano 2018, 12, 3235-3242.

15

Sun, Z. P.; Martinez, A.; Wang, F. Optical modulators with 2D layered materials. Nat. Photonics 2016, 10, 227-238.

16

Liu, T.; Liu, S.; Tu, K. H.; Schmidt, H.; Chu, L. Q.; Xiang, D.; Martin, J.; Eda, G.; Ross, C. A.; Garaj, S. Crested two-dimensional transistors. Nat. Nanotechnol. 2019, 14, 223-226.

17

Martella, C.; Melloni, P.; Cinquanta, E.; Cianci, E.; Alia, M.; Longo, M.; Lamperti, A.; Vangelista, S.; Fanciulli, M.; Molle, A. Engineering the growth of MoS2 via atomic layer deposition of molybdenum oxide film precursor. Adv. Electron. Mater. 2016, 2, 1600330.

18

Keller, B. D.; Bertuch, A.; Provine, J.; Sundaram, G.; Ferralis, N.; Grossman, J. C. Process control of atomic layer deposition molybdenum oxide nucleation and sulfidation to large-area MoS2 monolayers. Chem. Mater. 2017, 29, 2024-2032.

19

Vangelista, S.; Cinquanta, E.; Martella, C.; Alia, M.; Longo, M.; Lamperti, A.; Mantovan, R.; Basset, F. B.; Pezzoli, F.; Molle, A. Towards a uniform and large-scale deposition of MoS2 nanosheets via sulfurization of ultra-thin Mo-based solid films. Nanotechnology 2016, 27, 175703.

20

Zhang, X. H.; Huang, X. H.; Xue, M. Q.; Ye, X.; Lei, W. N.; Tang, H.; Li, C. S. Hydrothermal synthesis and characterization of 3D flower-like MoS2 microspheres. Mater. Lett. 2015, 148, 67-70.

21

Lee, Y. H.; Zhang, X. Q.; Zhang, W. J.; Chang, M. T.; Lin, C. T.; Chang, K. D.; Yu, Y. C.; Wang, J. T. W.; Chang, C. S.; Li, L. J. et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 2012, 24, 2320-2325.

22

Michail, A.; Parthenios, J.; Anestopoulos, D.; Galiotis, C.; Christian, M.; Ortolani, L.; Morandi, V.; Papagelis, K. Controllable, eco-friendly, synthesis of highly crystalline 2D-MoS2 and clarification of the role of growth-induced strain. 2D Mater. 2018, 5, 035035.

23

Li, H.; Zhang, Q.; Yap, C. C. R.; Tay, B. K.; Edwin, T. H. T.; Olivier, A.; Baillargeat, D. From bulk to monolayer MoS2: Evolution of raman scattering. Adv. Funct. Mater. 2012, 22, 1385-1390.

24

Frey, G. L.; Tenne, R.; Matthews, M. J.; Dresselhaus, M. S.; Dresselhaus, G. Raman and resonance Raman investigation of MoS2 nanoparticles. Phys. Rev. B 1999, 60, 2883-2892.

25

Chakraborty, B.; Matte, H. S. S. R.; Sood, A. K.; Rao, C. N. R. Layer- dependent resonant Raman scattering of a few layer MoS2. J. Raman Spectrosc. 2013, 44, 92-96.

26

Livneh, T.; Sterer, E. Resonant Raman scattering at exciton states tuned by pressure and temperature in 2H-MoS2. Phys. Rev. B 2010, 81, 195209.

Nano Research
Pages 1851-1854
Cite this article:
Martella C, Ortolani L, Cianci E, et al. Large-area patterning of substrate-conformal MoS2 nano-trenches. Nano Research, 2019, 12(8): 1851-1854. https://doi.org/10.1007/s12274-019-2446-0
Topics:

713

Views

16

Crossref

N/A

Web of Science

15

Scopus

0

CSCD

Altmetrics

Received: 08 March 2019
Revised: 16 May 2019
Accepted: 26 May 2019
Published: 04 June 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return