Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
We assessed the influence of Yb3+ and Er3+ dopant concentration on the relative spectral distribution, quantum yield (ƵUC), and decay kinetics of the upconversion luminescence (UCL) and particle brightness (BUC) for similarly sized (33 nm) oleate-capped β-NaYF4: Yb3+, Er3+ upconversion (UC) nanoparticles (UCNPs) in toluene at broadly varied excitation power densities (P). This included an Yb3+ series where the Yb3+ concentration was varied between 11%Ƀ21% for a constant Er3+ concentration of 3%, and an Er3+ series, where the Er3+ concentration was varied between 1%Ƀ4% for a constant Yb3+ concentration of 14%. The results were fitted with a coupled rate equation model utilizing the UCL data and decay kinetics of the green and red Er3+ emission and the Yb3+ luminescence at 980 nm. An increasing Yb3+ concentration favors a pronounced triphotonic population of 4F9/2 at high P by an enhanced back energy transfer (BET) from the 4G11/2 level. Simultaneously, the Yb3+-controlled UCNPs absorption cross section overcompensates for the reduction in ƵUC with increasing Yb3+ concentration at high P, resulting in an increase in BUC. Additionally, our results show that an increase in Yb3+ and a decrease in Er3+ concentration enhance the color tuning range by P. These findings will pave the road to a deeper understanding of the energy transfer processes and their contribution to efficient UCL, as well as still debated trends in green-to-red intensity ratios of UCNPs at different P.
Mader, H. S.; Kele, P.; Saleh, S. M.; Wolfbeis, O. S. Upconverting luminescent nanoparticles for use in bioconjugation and bioimaging. Curr. Opin. Chem. Biol. 2010, 14, 582-596.
Goldschmidt, J. C.; Fischer, S. Upconversion for photovoltaics - a review of materials, devices and concepts for performance enhancement. Adv. Opt. Mater. 2015, 3, 510-535.
Chen, G. Y.; Ågren, H.; Ohulchanskyy, T. Y.; Prasad, P. N. Light upconverting core-shell nanostructures: Nanophotonic control for emerging applications. Chem. Soc. Rev. 2015, 44, 1680-1713.
Resch-Genger, U.; Gorris, H. H. Perspectives and challenges of photon- upconversion nanoparticles - Part Ⅰ: Routes to brighter particles and quan-titative spectroscopic studies. Anal. Bioanal. Chem. 2017, 409, 5855-5874.
Jaque, D.; Vetrone, F. Luminescence nanothermometry. Nanoscale 2012, 4, 4301-4326.
Zhou, B.; Shi, B. Y.; Jin, D. Y.; Liu, X. G. Controlling upconversion nano-crystals for emerging applications. Nat. Nanotechnol. 2015, 10, 924-936.
Chan, E. M. Combinatorial approaches for developing upconverting nanomaterials: High-throughput screening, modeling, and applications. Chem. Soc. Rev. 2015, 44, 1653-1679.
Haase, M.; Schafer, H. Upconverting nanoparticles. Angew. Chem. , Int. Ed. 2011, 50, 5808-5829.
Liu, G. K. Advances in the theoretical understanding of photon upconversion in rare-earth activated nanophosphors. Chem. Soc. Rev. 2015, 44, 1635-1652.
Han, S. Y.; Deng, R. R.; Xie, X. J.; Liu, X. G. Enhancing luminescence in lanthanide-doped upconversion nanoparticles. Angew. Chem. , Int. Ed. 2014, 53, 11702-11715.
Wang, X. D.; Valiev, R. R.; Ohulchanskyy, T. Y.; Ågren, H.; Yang, C. H.; Chen, G. Y. Dye-sensitized lanthanide-doped upconversion nanoparticles. Chem. Soc. Rev. 2017, 46, 4150-4167.
Pilch, A.; Würth, C.; Kaiser, M.; Wawrzyńczyk, D.; Kurnatowska, M.; Arabasz, S.; Prorok, K.; Samoć, M.; Strek, W.; Resch-Genger, U. et al. Shaping luminescent properties of Yb3+ and Ho3+ co-doped upconverting core-shell β-NaYF4 nanoparticles by dopant distribution and spacing. Small 2017, 13, 1701635.
Renero-Lecuna, C.; Martín-Rodríguez, R.; Valiente, R.; González, J.; Rodríguez, F.; Krämer, K. W.; Güdel, H. U. Origin of the high upconversion green luminescence efficiency in β-NaYF4: 2%Er3+, 20%Yb3+. Chem. Mater. 2011, 23, 3442-3448.
Anderson, R. B.; Smith, S. J.; May, P. S.; Berry, M. T. Revisiting the NIR-to- visible upconversion mechanism in β-NaYF4: Yb3+, Er3+. J. Phys. Chem. Lett. 2014, 5, 36-42.
Berry, M. T.; May, P. S. Disputed mechanism for NIR-to-red upconversion luminescence in NaYF4: Yb3+, Er3+. J. Phys. Chem. A 2015, 119, 9805-9811.
Würth, C.; Kaiser, M.; Wilhelm, S.; Grauel, B.; Hirsch, T.; Resch-Genger, U. Excitation power dependent population pathways and absolute quantum yields of upconversion nanoparticles in different solvents. Nanoscale 2017, 9, 4283-4294.
Kaiser, M.; Würth, C.; Kraft, M.; Hyppänen, I.; Soukka, T.; Resch-Genger, U. Power-dependent upconversion quantum yield of NaYF4: Yb3+, Er3+ nano- and micrometer-sized particles-measurements and simulations. Nanoscale 2017, 9, 10051-10058.
Wang, F.; Liu, X. G. Upconversion multicolor fine-tuning: Visible to near- infrared emission from lanthanide-doped NaYF4 nanoparticles. J. Am. Chem. Soc. 2008, 130, 5642-5643.
Wang, J.; Deng, R. R.; MacDonald, M. A.; Chen, B. L.; Yuan, J. K.; Wang, F.; Chi, D. Z.; Andy Hor, T. S.; Zhang, P.; Liu, G. K. et al. Enhancing multiphoton upconversion through energy clustering at sublattice level. Nat. Mater. 2014, 13, 157-162.
Gao, D. L.; Zhang, X. Y.; Chong, B.; Xiao, G. Q.; Tian, D. P. Simultaneous spectra and dynamics processes tuning of a single upconversion microtube through Yb3+ doping concentration and excitation power. Phys. Chem. Chem. Phys. 2017, 19, 4288-4296.
Zhou, J.; Liu, Q.; Feng, W.; Sun, Y.; Li, F. Y. Upconversion luminescent materials: Advances and applications. Chem. Rev. 2015, 115, 395-1465.
Xue, X. J.; Uechi, S.; Tiwari, R. N.; Duan, Z. C.; Liao, M. S.; Yoshimura, M.; Suzuki, T.; Ohishi, Y. Size-dependent upconversion luminescence and quenching mechanism of LiYF4: Er3+/Yb3+ nanocrystals with oleate ligand adsorbed. Opt. Mater. Express 2013, 3, 989-999.
Xu, C. T.; Zhan, Q. Q.; Liu, H. C.; Somesfalean, G.; Qian, J.; He, S. L.; Andersson-Engels, S. Upconverting nanoparticles for pre-clinical diffuse optical imaging, microscopy and sensing: Current trends and future challenges. Laser Photonics Rev. 2013, 7, 663-697.
Wei, W.; Zhang, Y.; Chen, R.; Goggi, J.; Ren, N.; Huang, L.; Bhakoo, K. K.; Sun, H. D.; Tan, T. T. Y. Cross relaxation induced pure red upconversion in activator- and sensitizer-rich lanthanide nanoparticles. Chem. Mater. 2014, 26, 5183-5186.
Wang, Y.; Liu, K.; Liu, X. M.; Dohnalová, K.; Gregorkiewicz, T.; Kong, X. G.; Aalders, M. C. G.; Buma, W. J.; Zhang, H. Critical shell thickness of core/shell upconversion luminescence nanoplatform for FRET application. J. Phys. Chem. Lett. 2011, 2, 2083-2088.
Wang, F.; Liu, X. G. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem. Soc. Rev. 2009, 38, 976-989.
Wang, F.; Han, Y.; Lim, C. S.; Lu, Y. H.; Wang, J.; Xu, J.; Chen, H. Y.; Zhang, C.; Hong, M. H.; Liu, X. G. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 2010, 463, 1061-1065.
Vetrone, F.; Naccache, R.; Mahalingam, V.; Morgan, C. G.; Capobianco, J. A. The active-core/active-shell approach: A strategy to enhance the upconversion luminescence in lanthanide-doped nanoparticles. Adv. Funct. Mater. 2009, 19, 2924-2929.
Bogdan, N.; Vetrone, F.; Ozin, G. A.; Capobianco, J. A. Synthesis of ligand- free colloidally stable water dispersible brightly luminescent lanthanide-doped upconverting nanoparticles. Nano Lett. 2011, 11, 835-840.
Arppe, R.; Hyppänen, I.; Perälä, N.; Peltomaa, R.; Kaiser, M.; Würth, C.; Christ, S.; Resch-Genger, U.; Schaferling, M.; Soukka, T. Quenching of the upconversion luminescence of NaYF4: Yb3+, Er3+ and NaYF4: Yb3+, Tm3+ nanophosphors by water: The role of the sensitizer Yb3+ in non-radiative relaxation. Nanoscale 2015, 7, 11746-11757.
Liu, L.; Jiang, H. L.; Chen, Y. J.; Zhang, X. L.; Zhang, Z. G.; Wang, Y. X. Power dependence of upconversion luminescence of Er3+ doped Yttria nanocrystals and their bulk counterpart. J. Lumin. 2013, 143, 423-431.
Mai, H. X.; Zhang, Y. W.; Sun, L. D.; Yan, C. H. Size- and phase-controlled synthesis of monodisperse NaYF4: Yb, Er nanocrystals from a unique delayed nucleation pathway monitored with upconversion spectroscopy. J. Phys. Chem. C 2007, 111, 13730-13739.
Xu, D. K.; Liu, C. F.; Yan, J. W.; Yang, S. H.; Zhang, Y. L. Understanding energy transfer mechanisms for tunable emission of Yb3+-Er3+ codoped GdF3 nanoparticles: Concentration-dependent luminescence by near-infrared and violet excitation. J. Phys. Chem. C 2015, 119, 6852-6860.
Liao, J. S.; Nie, L. L.; Liu, S. H.; Liu, B.; Wen, H. R. Yb3+ concentration dependence of upconversion luminescence in Y2Sn2O7: Yb3+/Er3+ nano-phosphors. J. Mater. Sci. 2014, 49, 6081-6086.
Shen, B.; Cheng, S. M.; Gu, Y. Y.; Ni, D. R.; Gao, Y. L.; Su, Q. Q.; Feng, W.; Li, F. Y. Revisiting the optimized doping ratio in core/shell nanostructured upconversion particles. Nanoscale 2017, 9, 1964-1971.
Zhao, J. W.; Sun, Y. J.; Kong, X. G.; Tian, L. J.; Wang, Y.; Tu, L. P.; Zhao, J. L.; Zhang, H. Controlled synthesis, formation mechanism, and great enhancement of red upconversion luminescence of NaYF4: Yb3+, Er3+ nanocrystals/submicroplates at low doping level. J. Phys. Chem. B 2008, 112, 15666-15672.
Zhu, H. Y.; Lin, M.; Jin, G. R.; Lu, T. J.; Xu, F. A modified energy transfer model for determination of upconversion emission of β-NaYF4: Yb, Er: Role of self-quenching effect. J. Lumin. 2017, 185, 292-297.
Li, D. G.; Qin, W. P.; Zhao, D.; Aidilibike, T.; Chen, H.; Liu, S. H.; Zhang, P.; Wang, L. L. Tunable green to red upconversion fluorescence of water-soluble hexagonal-phase core-shell CaF2@NaYF4 nanocrystals. Opt. Mater. Express 2016, 6, 270-278.
Kraft, M.; Würth, C.; Muhr, V.; Hirsch, T.; Resch-Genger, U. Particle-size- dependent upconversion luminescence of NaYF4: Yb, Er nanoparticles in organic solvents and water at different excitation power densities. Nano Res. 2018, 11, 6360-6374.
Fischer, S.; Bronstein, N. D.; Swabeck, J. K.; Chan, E. M.; Alivisatos, A. P. Precise tuning of surface quenching for luminescence enhancement in core-shell lanthanide-doped nanocrystals. Nano Lett. 2016, 16, 7241-7247.
Hossan, M. Y.; Hor, A.; Luu, Q.; Smith, S. J.; May, P. S.; Berry, M. T. Explaining the nanoscale effect in the upconversion dynamics of β-NaYF4: Yb3+, Er3+ core and core-shell nanocrystals. J. Phys. Chem. C 2017, 121, 16592-16606.
Homann, C.; Krukewitt, L.; Frenzel, F.; Grauel, B.; Würth, C.; Resch- Genger, U.; Haase, M. NaYF4: Yb, Er/NaYF4 core/shell nanocrystals with high upconversion luminescence quantum yield. Angew. Chem. , Int. Ed. 2018, 57, 8765-8769.
Würth, C.; Fischer, S.; Grauel, B.; Alivisatos, A. P.; Resch-Genger, U. Quantum yields, surface quenching, and passivation efficiency for ultrasmall core/shell upconverting nanoparticles. J. Am. Chem. Soc. 2018, 140, 4922-4928.
Zhao, J. B.; Lu, Z. D.; Yin, Y. D.; McRae, C.; Piper, J. A.; Dawes, J. M.; Jin, D. Y.; Goldys, E. M. Upconversion luminescence with tunable lifetime in NaYF4: Yb, Er nanocrystals: Role of nanocrystal size. Nanoscale 2013, 5, 944-952.
Wilhelm, S.; Kaiser, M.; Würth, C.; Heiland, J.; Carrillo-Carrion, C.; Muhr, V.; Wolfbeis, O. S.; Parak, W. J.; Resch-Genger, U.; Hirsch, T. Water dispersible upconverting nanoparticles: Effects of surface modification on their luminescence and colloidal stability. Nanoscale 2015, 7, 1403-1410.
Hudry, D.; Busko, D.; Popescu, R.; Gerthsen, D.; Abeykoon, A. M. M.; Kübel, C.; Bergfeldt, T.; Richards, B. S. Direct evidence of significant cation intermixing in upconverting core@shell nanocrystals: Toward a new crystallochemical model. Chem. Mater. 2017, 29, 9238-9246.
Dühnen, S.; Haase, M. Study on the intermixing of core and shell in NaEuF4/NaGdF4 core/shell nanocrystals. Chem. Mater. 2015, 27, 8375-8386.
Zuo, J.; Sun, D. P.; Tu, L. P.; Wu, Y. N.; Cao, Y. H.; Xue, B.; Zhang, Y. L.; Chang, Y. L.; Liu, X. M.; Kong, X. G. et al. Precisely tailoring upconversion dynamics via energy migration in core-shell nanostructures. Angew. Chem. , Int. Ed. 2018, 57, 3054-3058.
Shalav, A.; Richards, B. S.; Trupke, T.; Krämer, K. W.; Güdel, H. U. Application of NaYF4: Er3+ up-converting phosphors for enhanced near-infrared silicon solar cell response. Appl. Phys. Lett. 2004, 86, 013505.
Ivaturi, A.; MacDougall, S. K. W.; Martín-Rodríguez, R.; Quintanilla, M.; Marques-Hueso, J.; Krämer, K. W.; Meijerink, A.; Richards, B. S. Optimizing infrared to near infrared upconversion quantum yield of β-NaYF4: Er3+ in fluoropolymer matrix for photovoltaic devices. J. Appl. Phys. 2013, 114, 013505.
Vetrone, F.; Boyer, J. C.; Capobianco, J. A.; Speghini, A.; Bettinelli, M. Effect of Yb3+ codoping on the upconversion emission in nanocrystalline Y2O3: Er3+. J. Phys. Chem. B 2003, 107, 1107-1112.
Gao, D. L.; Zhang, X. Y.; Zheng, H. R.; Gao, W.; He, E. J. Yb3+/Er3+ codoped β-NaYF4 microrods: Synthesis and tuning of multicolor upconversion. J. Alloys Compd. 2013, 554, 395-399.
Zhang, H. X.; Jia, T. Q.; Chen, L.; Zhang, Y. C.; Zhang, S. A.; Feng, D. H.; Sun, Z. R.; Qiu, J. R. Depleted upconversion luminescence in NaYF4: Yb3+, Tm3+ nanoparticles via simultaneous two-wavelength excitation. Phys. Chem. Chem. Phys. 2017, 19, 17756-17764.
Strohhöfer, C.; Polman, A. Absorption and emission spectroscopy in Er3+-Yb3+ doped aluminum oxide waveguides. Opt. Mater. 2003, 21, 705-712.
Wen, S. H.; Zhou, J. J.; Zheng, K. Z.; Bednarkiewicz, A.; Liu, X. G.; Jin, D. Y. Advances in highly doped upconversion nanoparticles. Nat. Commun. 2018, 9, 2415.
Gargas, D. J.; Chan, E. M.; Ostrowski, A. D.; Aloni, S.; Altoe, M. V. P.; Barnard, E. S.; Sanii, B.; Urban, J. J.; Milliron, D. J.; Cohen, B. E. et al. Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging. Nat. Nanotechnol. 2014, 9, 300-305.
Ylihärsilä, M.; Harju, E.; Arppe, R.; Hattara, L.; Hölsä, J.; Saviranta, P.; Soukka, T.; Waris, M. Genotyping of clinically relevant human adenoviruses by array-in-well hybridization assay. Clin. Microbiol. Infect. 2013, 19, 551-557.
Würth, C.; Grabolle, M.; Pauli, J.; Spieles, M.; Resch-Genger, U. Comparison of methods and achievable uncertainties for the relative and absolute measurement of photoluminescence quantum yields. Anal. Chem. 2011, 83, 3431-3439.
Würth, C.; Pauli, J.; Lochmann, C.; Spieles, M.; Resch-Genger, U. Integrating sphere setup for the traceable measurement of absolute photoluminescence quantum yields in the near infrared. Anal. Chem, 2012, 84, 1345-1352.
Hatami, S.; Würth, C.; Kaiser, M.; Leubner, S.; Gabriel, S.; Bahrig, L.; Lesnyak, V.; Pauli, J.; Gaponik, N.; Eychmüller, A. et al. Absolute photoluminescence quantum yields of IR26 and IR-emissive Cd1-xHgxTe and PbS quantum dots - method- and material-inherent challenges. Nanoscale 2015, 7, 133-143.
Resch-Genger, U.; Bremser, W.; Pfeifer, D.; Spieles, M.; Hoffmann, A.; DeRose, P. C.; Zwinkels, J. C.; Gauthier, F.; Ebert, B.; Taubert, R. D. et al. State-of-the art comparability of corrected emission spectra. 2. Field laboratory assessment of calibration performance using spectral fluorescence standards. Anal. Chem. 2012, 84, 3899-3907.
Würth, C.; Grabolle, M.; Pauli, J.; Spieles, M.; Resch-Genger, U. Relative and absolute determination of fluorescence quantum yields of transparent samples. Nat. Protoc. 2013, 8, 1535-1550.