AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Zinc-substituted hemoglobin with specific drug binding sites and fatty acid resistance ability for enhanced photodynamic therapy

Yiting Xu1,§Jiamei Xu1,§Xiaoxiao Hu1,§Xin Xia1Qian Dong1Zhangkun Liu1Zhuo Chen1,*( )Weihong Tan1,2
Molecular Science and Biomedicine Laboratory,State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, Aptamer Engineering Center of Hunan Province, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University,Changsha,410082,China;
Department of Chemistry, Departments of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface,UF Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida,Gainesville, Florida,32611,USA;

§Yiting Xu, Jiamei Xu, and Xiaoxiao Hu contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Precisely designed protein-based nanodrugs, as a kind of colloidal drug system, have attracted significant attention in tumor therapy because of their refined drug loading ratio, controlled delivery efficacy and natural biocompatibility. However, most drugs are conjugated to the protein carriers randomly without specific binding sites. Moreover, such sites could easily be replaced by lipophilic molecules in the physiological environment and result in low delivery efficiency. With strong and specific binding locations especially comparatively narrow spatial binding sites and nonflexible structure, hemin (FePPIX)-free hemoglobin or apohemoglobin (apoHb), as a natural metalloporphyrin protein carrier, represents great potential in bioapplication. Therefore, we herein introduce a folate acid (FA) modified, zinc-substituted hemoglobin (ZnPHb-FA) as a naturally occurring protein matrix-based photosensitizer for cancer photodynamic therapy (PDT). Noncovalent inserted ZnPPIX molecules in apoHb possess an extremely stable property and significant recovered photoproperties with superior biocompatibility and phototoxicity, both in vitro and in vivo. This stability was verified by molecular docking analysis and calculation of binding constant, representing a total of five drug binding sites of apoHb for ZnPPIX molecules, four of which are energetically favorable (△G value of -11.9 kcal/mol), and one which is energetically acceptable (△G value of -9 kcal/mol). Folate acid modification has been shown to efficiently enhance the internalization and retention time of ZnPHb nanodrug. ZnPHb-FA is also an efficient depressor of hemin oxygenase-1 (HO-1), which could, in turn, lower the antioxidant ability of cancer cells by decreasing the production of bilirublin. Results in vitro and in vivo both indicated that the firmly combination of apoHb and ZnPPIX described here represents a novel and efficient protein nanodrug systems for cancer therapy.

Electronic Supplementary Material

Download File(s)
12274_2019_2452_MOESM1_ESM.pdf (3.2 MB)

References

1

Chen, G. Y.; Roy, I.; Yang, C. H.; Prasad, P. N. Nanochemistry and nanomedicine for nanoparticle-based diagnostics and therapy. Chem. Rev. 2016, 116, 2826-2885.

2

Peer, D.; Karp, J. M.; Hong, S.; Farokhzad, O. C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2007, 2, 751-760.

3

Elzoghby, A. O.; Samy, W. M.; Elgindy, N. A. Protein-based nanocarriers as promising drug and gene delivery systems. J. Control. Release 2012, 161, 38-49.

4

MaHam, A.; Tang, Z. W.; Wu, H.; Wang, J.; Lin, Y. H. Protein-based nanomedicine platforms for drug delivery. Small 2009, 5, 1706-1721.

5

Ahmad, R.; Deng, Y.; Singh, R.; Hussain, M.; Shah, M. A. A.; Elingarami, S.; He, N. Y.; Sun, Y. M. Cutting edge protein and carbohydrate-based materials for anticancer drug delivery. J. Biomed. Nanotechnol. 2018, 14, 20-43.

6

Einerson, N. J.; Stevens, K. R.; Kao, W. J. Synthesis and physicochemical analysis of gelatin-based hydrogels for drug carrier matrices. Biomaterials 2003, 24, 509-523.

7

Ruszczak, Z.; Friess, W. Collagen as a carrier for on-site delivery of antibacterial drugs. Adv. Drug Deliv. Rev. 2003, 55, 1679-1698.

8

Kratz, F. Albumin as a drug carrier: Design of prodrugs, drug conjugates and nanoparticles. J. Control. Release 2008, 132, 171-183.

9

Paliwal, R.; Palakurthi, S. Zein in controlled drug delivery and tissue engineering. J. Control. Release 2014, 189, 108-122.

10

Xu, Y.; Li, J. J.; Yu, D. G.; Williams, G. R.; Yang, J. H.; Wang, X. Influence of the drug distribution in electrospun gliadin fibers on drug-release behavior. Eur. J. Pharm. Sci. 2017, 106, 422-430.

11

Müller, S. K.; Wilhelm, I.; Schubert, T.; Zittlau, K.; Imberty, A.; Madl, J.; Eierhoff, T.; Thuenauer, R.; Römer, W. Gb3-binding lectins as potential carriers for transcellular drug delivery. Expert Opin. Drug Deliv. 2017, 14, 141-153.

12

Lohcharoenkal, W.; Wang, L. Y.; Chen, Y. C.; Rojanasakul, Y. Protein nanoparticles as drug delivery carriers for cancer therapy. Biomed Res. Int. 2014, 2014, 180549.

13

Wilhelm, S.; Tavares, A. J.; Dai, Q.; Ohta, S.; Audet, J.; Dvorak, H. F.; Chan, W. C. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 2016, 1, 16014.

14

Harwood, J. L. Fatty acid metabolism. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1988, 39, 101-138.

15

Wenskowsky, L.; Schreuder, H.; Derdau, V.; Matter, H.; Volkmar, J.; Nazaré, M.; Opatz, T.; Petry, S. Identification and characterization of a single high-affinity fatty acid binding site in human serum albumin. Angew. Chem. , Int. Ed. 2018, 57, 1044-1048.

16

Zheng, Y. R.; Suntharalingam, K.; Johnstone, T. C.; Yoo, H.; Lin, W.; Brooks, J. G.; Lippard, S. J. Pt(Ⅳ) prodrugs designed to bind non-covalently to human serum albumin for drug delivery. J. Am. Chem. Soc. 2014, 136, 8790-8798.

17

Topete, A.; Alatorre-Meda, M.; Iglesias, P.; Villar-Alvarez, E. M.; Barbosa, S.; Costoya, J. A.; Taboada, P.; Mosquera, V. Fluorescent drug-loaded, polymeric-based, branched gold nanoshells for localized multimodal therapy and imaging of tumoral cells. ACS Nano 2014, 8, 2725-2738.

18

Peng, Y. B.; Zhao, Z. L.; Liu, T.; Li, X.; Hu, X. X.; Wei, X. P.; Zhang, X. B.; Tan, W. H. Albumin-As2O3 nanodrug with self-amplified folate receptor- targeting ability for chronic myeloid leukemia treatment. Angew. Chem. , Int. Ed. 2017, 56, 10845-10849.

19

Rajora, M. A.; Lou, J. W. H.; Zheng, G. Advancing porphyrin's biomedical utility via supramolecular chemistry. Chem. Soc. Rev. 2017, 46, 6433-6469.

20

Sahoo, S. K.; Sawa, T.; Fang, J.; Tanaka, S.; Miyamoto, Y.; Akaike, T.; Maeda, H. Pegylated zinc protoporphyrin: A water-soluble heme oxygenase inhibitor with tumor-targeting capacity. Bioconjugate Chem. 2002, 13, 1031-1038.

21

Regehly, M.; Greish, K.; Rancan, F.; Maeda, H.; Böhm, F.; Röder, B. Water-soluble polymer conjugates of ZnPP for photodynamic tumor therapy. Bioconjugate Chem. 2007, 18, 494-499.

22

Derycke, A. S. L.; De Witte, P. A. M. Liposomes for photodynamic therapy. Adv. Drug Deliv. Rev. 2004, 56, 17-30.

23

Luo, Z. Y.; Zheng, M. B.; Zhao, P. F.; Chen, Z.; Siu, F. M.; Gong, P.; Gao, G. H.; Sheng, Z. H.; Zheng, C. F.; Ma, Y. F. et al. Self-monitoring artificial red cells with sufficient oxygen supply for enhanced photodynamic therapy. Sci. Rep. 2016, 6, 23393.

24

Van Nostrum, C. F. Polymeric micelles to deliver photosensitizers for photodynamic therapy. Adv. Drug Deliv. Rev. 2004, 56, 9-16.

25

Zhang, K.; Zhang, Y. D.; Meng, X. D; Lu, H. T.; Chang, H.; Dong, H. F.; Zhang, X. J. Light-triggered theranostic liposomes for tumor diagnosis and combined photodynamic and hypoxia-activated prodrug therapy. Biomaterials 2018, 185, 301-309.

26

Liu, C. H.; Dong, H. F.; Wu, N. Q; Cao, Y.; Zhang, X. J. Plasmonic resonance energy transfer enhanced photodynamic therapy with Au@SiO2@Cu2O/ perfluorohexane nanocomposites. ACS Appl. Mater. Interfaces 2018, 10, 6991-7002.

27

Hu, D. R.; Zhong, L.; Wang, M. Y.; Li, H. H.; Qu, Y.; Liu, Q. Y.; Han, R. X.; Yuan, L. P.; Shi, Y.; Peng, J. R. et al. Perfluorocarbon-loaded and redox-activatable photosensitizing agent with oxygen supply for enhancement of fluorescence/photoacoustic imaging guided tumor photodynamic therapy. Adv. Funct. Mater. 2019, 29, 1806199.

28

Xin, J.; Wang, S. J.; Wang, J.; Wang, J. Z.; Fu, L.; Zhang, L. W.; Shen, L. J.; Zhang, Z. X.; Yao, C. P. Nanosystem integrated with photosensitizer and novel targeting chemotherapy agent for gastric cancer chemo-photodynamic combined therapy. J. Biomed. Nanotechnol. 2018, 14, 1430-1447.

29

Hardison, R. C. A brief history of hemoglobins: Plant, animal, protist, and bacteria. Proc. Natl. Acad. Sci. USA 1996, 93, 5675-5679.

30

Paoli, M.; Liddington, R.; Tame, J.; Wilkinson, A.; Dodson, G. Crystal structure of T state haemoglobin with oxygen bound at all four haems. J. Mol. Biol. 1996, 256, 775-792.

31

Dougherty, T. J. Gomer, C. J.; Henderson, B. W.; Jori, G.; Kessel, D.; Korbelik, M.; Moan, J.; Peng, Q. Photodynamic therapy. J. Natl. Cancer Inst. 1998, 90, 889-905.

32

Felsher, D. W. Cancer revoked: Oncogenes as therapeutic targets. Nat. Rev. Cancer 2003, 3, 375-380.

33

Agostinis, P.; Berg, K.; Cengel, K. A.; Foster, T. H.; Girotti, A. W.; Gollnick, S. O.; Hahn, S. M.; Hamblin, M. R.; Juzeniene, A.; Kessel, D. et al. Photodynamic therapy of cancer: An update. CA Cancer J. Clin. 2011, 61, 250-281.

34

Sternberg, E. D.; Dolphin, D.; Brückner, C. Porphyrin-based photosensitizers for use in photodynamic therapy. Tetrahedron 1998, 54, 4151-4202.

35

Jin, C. S.; Lovell, J. F.; Chen, J.; Zheng, G. Ablation of hypoxic tumors with dose-equivalent photothermal, but not photodynamic, therapy using a nanostructured porphyrin assembly. ACS Nano 2013, 7, 2541-2550.

36

Lovell, J. F.; Jin, C. S.; Huynh, E.; Jin, H. L.; Kim, C.; Rubinstein, J. L.; Chan, W. C. W.; Cao, W. G.; Wang, L. V.; Zheng, G. Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents. Nat. Mater. 2011, 10, 324-332.

37

Wang, S. S.; Yuan, F.; Chen, K.; Chen, G. J.; Tu, K. H.; Wang, H. J.; Wang, L. Q. Synthesis of hemoglobin conjugated polymeric micelle: A ZnPc carrier with oxygen self-compensating ability for photodynamic therapy. Biomacromolecules 2015, 16, 2693-2700.

38

Xu, X.; Cui, Y. C.; Bu, H. X.; Chen, J. M.; Li, Y.; Tang, G. P.; Wang, L. Q. A photosensitizer loaded hemoglobin-polymer conjugate as a nanocarrier for enhanced photodynamic therapy. J. Mater. Chem. B 2018, 6, 1825-1833.

39

Lepeshkevich, S. V.; Parkhats, M. V.; Stasheuski, A. S.; Britikov, V. V.; Jarnikova, E. S.; Usanov, S. A.; Dzhagarov, B. M. Photosensitized singlet oxygen luminescence from the protein matrix of Zn-substituted myoglobin. J. Phys. Chem. A 2014, 118, 1864-1878.

40

Key, H. M.; Dydio, P.; Clark, D. S.; Hartwig, J. F. Abiological catalysis by artificial haem proteins containing noble metals in place of iron. Nature 2016, 534, 534-537.

41

Delcanale, P.; Montali, C.; Rodriguez-Amigo, B.; Abbruzzetti, S.; Bruno, S.; Bianchini, P.; Diaspro, A.; Agut, M.; Nonell, S.; Viappiani, C. Zinc- substituted myoglobin is a naturally occurring photo-antimicrobial agent with potential applications in food decontamination. J. Agric. Food Chem. 2016, 64, 8633-8639.

42

Drummond, G. S.; Kappas, A. Prevention of neonatal hyperbilirubinemia by tin protoporphyrin IX, a potent competitive inhibitor of heme oxidation. Proc. Natl. Acad. Sci. USA 1981, 78, 6466-6470.

43

Naveen, R; Akshata, K., Pimple, S.; Chaudhari, P. A review on albumin as drug carrier in treating different diseases and disorders. Der Pharm. Sin. 2016, 7, 11-15.

44

Park, K. Albumin: A versatile carrier for drug delivery. J. Control. Release 2012, 157, 3.

45

Chen, Q.; Liu, Z. Albumin carriers for cancer theranostics: A conventional platform with new promise. Adv. Mater. 2016, 28, 10557-10566.

46

Tsuneshige, A.; Yonetani, T. Preparation of mixed metal hybrids. Methods Enzymol. 1994, 231, 215-222.

47

Trott, O.; Olson, A. J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455-461.

48

Hu, J.; Allen, R.; Rozinek, S.; Brancaleon, L. Experimental and computational characterization of photosensitized conformational effects mediated by protoporphyrin ligands on human serum albumin. Photochem. Photobiol. Sci. 2017, 16, 694-710.

49

Boaz, H.; Rollefson, G. K. The quenching of fluorescence. deviations from the stern-volmer law. J. Am. Chem. Soc. 1950, 72, 3435-3443.

50

Cai, C. Q.; Chen, X. M.; Ge, F. Analysis of interaction between tamoxifen and ctDNA in vitro by multi-spectroscopic methods. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2010, 76, 202-206

51

Yu, X. Y.; Liu, R. H.; Yi, R. Q.; Yang, F. X.; Huang, H. W.; Chen, J.; Ji, D. H.; Yang, Y.; Li, X. F.; Yi, P. G. Study of the interaction between N-confused porphyrin and bovine serum albumin by fluorescence spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2011, 78, 1329-1335.

52

Komatsu, T.; Wang, R. M.; Zunszain, P. A.; Curry, S.; Tsuchida, E. Photosensitized reduction of water to hydrogen using human serum albumin complexed with zinc-protoporphyrin IX. J. Am. Chem. Soc. 2006, 128, 16297-16301.

53

Gyulkhandanyan, A. G.; Ghazaryan, R. K.; Knyukshto, V. N.; Stasheuski, A. S.; Dzhagarov, B. M.; Gyulkhandanyan, G. V. Action of fatty acids on the binding capacity of porphyrins to blood proteins: I. Spectral investigations. Biol. J. Arm. 2012, 4, 80-84.

54

Zhang, G. Y.; Wu, J.; Liu, Y. R.; Huang, L.; Qiao, J.; Liu, X.; Wei, J. Y.; Guan, Q. X. Effects of degree of substitution on stearic acid-modified Bletilla striata polysaccharides nanoparticles and interactions between nanoparticles and bovine serum albumin. Chin. Chem. Lett. 2018, 29, 1861-1864.

55

Valko, M.; Rhodes, C. J.; Moncol, J.; Izakovic, M.; Mazur, M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem. Biol. Interact. 2006, 160, 1-40.

56

Trachootham, D.; Alexandre, J.; Huang, P. Targeting cancer cells by ROS- mediated mechanisms: A radical therapeutic approach? Nat. Rev. Drug Discov. 2009, 8, 579-591.

57

Doi, K.; Akaike, T.; Fuji, S.; Tanaka, S.; Ikebe, N.; Beppu, T.; Shibahara, S.; Ogawa, M.; Maeda, H. Induction of haem oxygenase-1 by nitric oxide and ischaemia in experimental solid tumours and implications for tumour growth. Br. J. Cancer 1999, 80, 1945-1954.

58

Minetti, M.; Mallozzi, C.; Di Stasi, A. M. M.; Pietraforte, D. Bilirubin is an effective antioxidant of peroxynitrite-mediated protein oxidation in human blood plasma. Arch. Biochem. Biophys. 1998, 352, 165-174.

59

Maines, M. D. Heme oxygenase: Function, multiplicity, regulatory mechanisms, and clinical applications. FASEB J. 1988, 2, 2557-2568.

60

Sardana, M. K.; Kappas, A. Dual control mechanism for heme oxygenase: Tin(Ⅳ)-protoporphyrin potently inhibits enzyme activity while markedly increasing content of enzyme protein in liver. Proc. Natl. Acad. Sci. USA 1987, 84, 2464-2468.

61

Zhang, W. S.; Contag, P. R.; Hardy, J.; Zhao, H.; Vreman, H. J.; Hajdena- Dawson, M.; Wong, R. J.; Stevenson, D. K.; Contag, C. H. Selection of potential therapeutics based on in vivo spatiotemporal transcription patterns of heme oxygenase-1. J. Mol. Med. (Berl. ) 2002, 80, 655-664.

62

Fang, J.; Sawa, T.; Akaike, T.; Akuta, T.; Sahoo, S. K.; Khaled, G.; Hamada, A.; Maeda, H. In vivo antitumor activity of pegylated zinc protoporphyrin: Targeted inhibition of heme oxygenase in solid tumor. Cancer Res. 2003, 63, 3567-3574.

Nano Research
Pages 1880-1887
Cite this article:
Xu Y, Xu J, Hu X, et al. Zinc-substituted hemoglobin with specific drug binding sites and fatty acid resistance ability for enhanced photodynamic therapy. Nano Research, 2019, 12(8): 1880-1887. https://doi.org/10.1007/s12274-019-2452-2
Topics:

788

Views

17

Crossref

0

Web of Science

18

Scopus

0

CSCD

Altmetrics

Received: 28 March 2019
Revised: 06 May 2019
Accepted: 03 June 2019
Published: 29 November 2023
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return