AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Growth of 12-inch uniform monolayer graphene film on molten glass and its application in PbI2-based photodetector

Zhaolong Chen1,2Haina Ci1,2Zhenjun Tan1,2Zhipeng Dou3Xu-dong Chen1Bingzhi Liu1,2Ruojuan Liu1,2Li Lin1,2Lingzhi Cui1,2Peng Gao3,4Hailin Peng1,2,4Yanfeng Zhang4,5( )Zhongfan Liu1,2,4( )
Center for Nanochemistry (CNC),Beijing Science and Engineering Center for Nanocarbons, College of Chemistry and Molecular Engineering, Peking University,Beijing,100871,China;
Beijing National Laboratory for Molecular Sciences,Beijing,100871,China;
Electron Microscopy Laboratory,School of Physics, Peking University,Beijing,100871,China;
Beijing Graphene Insititue (BGI),Beijing,100095,China;
Department of Materials Science and Engineering,College of Engineering, Peking University,Beijing,100871,China;
Show Author Information

Graphical Abstract

Abstract

Direct growth of large area uniform graphene on functional insulating materials is essential for engineering versatile applications of graphene. However, the existing synthesis approaches can hardly avoid the generation of non-uniform multilayer graphene along the gas flow direction, affording huge challenges for further scaling up. Herein, by exploiting the molten state of soda-lime glass, we have accomplished the direct growth of large area uniform (up to 30 cm × 6 cm) graphene via a facile chemical vapor deposition route on low cost soda-lime glass. The use of molten glass eliminates the chemically active sites (surface corrugations, scratches, defects), and improves the mobility of carbon precursors, affording uniform nucleation and growth of monolayer graphene. Intriguingly, thus-obtained graphene acts as an ideal coating layer for the surface crystallographic modification of soda-lime glass, making it epitaxy substrates for synthesizing high-quality PbI2 nanoplates and continues films. Accordingly, a prototype photodetector was fabricated to present excellent photoelectrical properties of high responsivity (~ 600 on/off current ratio) and fast response speed (18 μs). This work hereby paves ways for the batch production and the direct applications of graphene glass as platforms for constructing high performance electronic and optoelectronic devices.

Electronic Supplementary Material

Download File(s)
12274_2019_2453_MOESM1_ESM.pdf (3.8 MB)

References

1

Meric, I.; Han, M. Y.; Young, A. F.; Ozyilmaz, B.; Kim, P.; Shepard, K. L. Current saturation in zero-bandgap, top-gated graphene field-effect transistors. Nat. Nanotechnol. 2008, 3, 654-659.

2

Bae, S.; Kim, H.; Lee, Y.; Xu, X. F.; Park, J. S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H. R.; Song, Y. I. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010, 5, 574-578.

3

Raccichini, R.; Varzi, A.; Passerini, S.; Scrosati, B. The role of graphene for electrochemical energy storage. Nat. Mater. 2015, 14, 271-279.

4

Liu, M.; Yin, X. B.; Ulin-Avila, E.; Geng, B. S.; Zentgraf, T.; Ju, L.; Wang, F.; Zhang, X. A graphene-based broadband optical modulator. Nature 2011, 474, 64-67.

5

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666-669.

6

Lee, C.; Wei, X. D.; Kysar, J. W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385-388.

7

Chen, X. D.; Chen, Z. L.; Sun, J. Y.; Zhang, Y. F.; Liu, Z. F. Graphene glass: direct growth of graphene on traditional glasses. Acta Phys. Chim. Sin. 2016, 32, 14-27.

8

Sun, J. Y.; Chen, Y. B.; Priydarshi, M. K.; Chen, Z.; Bachmatiuk, A.; Zou, Z. Y.; Chen, Z. L.; Song, X. J.; Gao, Y. F.; Rüemmeli, M. H. et al. Direct chemical vapor deposition-derived graphene glasses targeting wide ranged applications. Nano Lett. 2015, 15, 5846-5854.

9

Chen, Z. L.; Guan, B. L.; Chen, X. D.; Zeng, Q.; Lin, L.; Wang, R. Y.; Priydarshi, M. K.; Sun, J. Y.; Zhang, Z. P.; Wei, T. B. et al. Fast and uniform growth of graphene glass using confined-flow chemical vapor deposition and its unique applications. Nano. Res. 2016, 9, 3048-3055.

10

Plummer, J. Molten bed. Nat. Mater. 2015, 14, 1186.

11

Chen, Y. B.; Sun, J. Y.; Gao, J. F.; Du, F.; Han, Q.; Nie, Y. F.; Chen, Z. L.; Bachmatiuk, A.; Priydarshi, M. K.; Ma, D. L. et al. Growing uniform graphene disks and films on molten glass for heating devices and cell culture. Adv. Mater. 2015, 27, 7839-7846.

12

Li, G.; Huang, S. H.; Li, Z. Y. Gas-phase dynamics in graphene growth by chemical vapour deposition. Phys. Chem. Chem. Phys. 2015, 17, 22832-22836.

13

Chen, X. D.; Chen, Z. L.; Jiang, W. S.; Zhang, C. H.; Sun, J. Y.; Wang, H. H.; Xin, W.; Lin, L.; Priydarshi, M. K.; Yang, H. et al. Fast growth and broad applications of 25-inch uniform graphene glass. Adv. Mater. 2017, 29, 1603428.

14

Han, G. H.; Güeneş, F.; Bae, J. J.; Kim, E. S.; Chae, S. J.; Shin, H. J.; Choi, J. Y.; Pribat, D.; Lee, Y. H. Influence of copper morphology in forming nucleation seeds for graphene growth. Nano Lett. 2011, 11, 4144-4148.

15

Sun, J. Y.; Chen, Z. L.; Yuan, L.; Chen, Y. B.; Ning, J.; Liu, S. W.; Ma, D. L.; Song, X. J.; Priydarshi, M. K.; Bachmatiuk, A. et al. Direct chemical- vapor-deposition-fabricated, large-scale graphene glass with high carrier mobility and uniformity for touch panel applications. ACS Nano 2016, 10, 11136-11144.

16

Novoselov, K. S.; Fal'ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192-200.

17

Shon, J. W.; Ohta, J.; Ueno, K.; Kobayashi, A.; Fujioka, H. Fabrication of full-color InGaN-based light-emitting diodes on amorphous substrates by pulsed sputtering. Sci. Rep. 2014, 4, 5325.

18

Chung, K.; Lee, C. H.; Yi, G. C. Transferable GaN layers grown on ZnO- coated graphene layers for optoelectronic devices. Science 2010, 330, 655-657.

19

Kumaresan, V.; Largeau, L.; Madouri, A.; Glas, F.; Zhang, H. Z.; Oehler, F.; Cavanna, A.; Babichev, A.; Travers, L.; Gogneau, N. et al. Epitaxy of GaN nanowires on graphene. Nano Lett. 2016, 16, 4895-4902.

20

Geng, D.C.; Wu, B.; Guo, Y.L.; Huang, L.P.; Xue, Y.Z.; Chen, J.Y.; Yu, G.; Jiang, L.; Hu, W.P.; Liu, Y.Q. Uniform hexagonal graphene flakes and films grown on liquid copper surface. Proc. Natl. Acad. Sci. USA 2012, 109, 7992-7996.

21

Li, X. S.; Zhu, Y. W.; Cai, W. W.; Borysiak, M.; Han, B. Y.; Chen, D.; Piner, R. D.; Colombo, L.; Ruoff, R. S. Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett. 2009, 9, 4359-4363.

22

Graf, D.; Molitor, F.; Ensslin, K.; Stampfer, C.; Jungen, A.; Hierold, C.; Wirtz, L. Spatially resolved Raman spectroscopy of single- and few-layer graphene. Nano Lett. 2007, 7, 238-242.

23

Chen, J. Y.; Wen, Y. G.; Guo, Y. L.; Wu, B.; Huang, L. P.; Xue, Y. Z.; Geng, D. C.; Wang, D.; Yu, G.; Liu, Y. Q. Oxygen-aided synthesis of polycrystalline graphene on silicon dioxide substrates. J. Am. Chem. Soc. 2011, 133, 17548-17551.

24

Li, X. S.; Cai, W. W.; An, J.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. et al. Large-area synthesis of high- quality and uniform graphene films on copper foils. Science 2009, 324, 1312-1314.

25

Gao, L. B.; Ni, G. X.; Liu, Y. P.; Liu, B.; Castro Neto, A. H.; Loh, K. P. Face-to-face transfer of wafer-scale graphene films. Nature 2014, 505, 190-194.

26

Song, H. J.; Son, M.; Park, C.; Lim, H.; Levendorf, M. P.; Tsen, A. W.; Park, J.; Choi, H. C. Large scale metal-free synthesis of graphene on sapphire and transfer-free device fabrication. Nanoscale 2012, 4, 3050-3054.

27

Bhaviripudi, S.; Jia, X. T.; Dresselhaus, M. S.; Kong, J. Role of kinetic factors in chemical vapor deposition synthesis of uniform large area graphene using copper catalyst. Nano Lett. 2010, 10, 4128-4133.

28

Deng, H.; Yang, X. K.; Dong, D. D.; Li, B.; Yang, D.; Yuan, S. J.; Qiao, K. K.; Cheng, Y. B.; Tang, J.; Song, H. S. Flexible and semitransparent organolead triiodide perovskite network photodetector arrays with high stability. Nano Lett. 2015, 15, 7963-7969.

29

Tian, Y. D.; Yan, J. C.; Zhang, Y.; Chen, X.; Guo, Y. N.; Cong, P. P.; Sun, L. L.; Wang, Q. J.; Guo, E. Q.; Wei, X. C. et al. Stimulated emission at 288 nm from silicon-doped AlGaN-based multiple-quantum-well laser. Opt. Express 2015, 23, 11334-11340.

30

Zheng, W.; Zhang, Z. J.; Lin, R. C.; Xu, K.; He, J.; Huang, F. High-crystalline 2D layered PbI2 with ultrasmooth surface: Liquid-phase synthesis and application of high-speed photon detection. Adv. Electron. Mater. 2016, 2, 1600291.

31

Roth, S.; Willig, W. R. Lead iodide nuclear particle detectors. Appl. Phys. Lett. 1971, 18, 328-330.

32

Lei, S. D.; Wen, F. F.; Ge, L. H.; Najmaei, S.; George, A.; Gong, Y. J.; Gao, W. L.; Jin, Z. H.; Li, B.; Lou, J. et al. An atomically layered InSe avalanche photodetector. Nano Lett. 2015, 15, 3048-3055.

33

Yang, S. X.; Li, Y.; Wang, X. Z.; Huo, N. J.; Xia, J. B.; Li, S. S.; Li, J. B. High performance few-layer GaS photodetector and its unique photo-response in different gas environments. Nanoscale 2014, 6, 2582-2587.

Nano Research
Pages 1888-1893
Cite this article:
Chen Z, Ci H, Tan Z, et al. Growth of 12-inch uniform monolayer graphene film on molten glass and its application in PbI2-based photodetector. Nano Research, 2019, 12(8): 1888-1893. https://doi.org/10.1007/s12274-019-2453-1
Topics:

663

Views

17

Crossref

N/A

Web of Science

19

Scopus

0

CSCD

Altmetrics

Received: 27 April 2019
Revised: 02 June 2019
Accepted: 03 June 2019
Published: 14 June 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return