AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Highly stable lead-free Cs3Bi2I9 perovskite nanoplates for photodetection applications

Zhaoyang QiXianwei FuTiefeng YangDong LiPeng FanHonglai LiFeng JiangLihui LiZiyu LuoXiujuan ZhuangAnlian Pan( )
Key Laboratory for Micro-Nano Physics and Technology of Hunan Province,College of Materials and Engineering, School of Physics and Electronic Science, and State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University,Changsha,410082,China;
Show Author Information

Graphical Abstract

Abstract

Lead halide perovskites have received tremendous attentions recently for their excellent properties such as high light absorption coefficient and long charge carrier diffusion length. However, the stability issues and the existence of toxic lead cations have largely limited their applications in optoelectronic area. Herein, we report the synthesis and investigation of highly stable and lead-free Cs3Bi2I9 perovskite nanoplates for visible light photodetection applications. The Cs3Bi2I9 nanoplates were synthesized through a facile solution-processed method, which is also applicable to various substrates. The achieved nanoplates present very good crystal quality and exhibit excellent long-term stability even exposed in moist air for several months. Photodetectors were constructed based on these high-quality perovskite nanoplates for the first time, and display a maximum photoresponsivity of 33.1 mA/W under the illumination of 450 nm laser, which is six times higher than the solution-synthesized CH3NH3PbI3 nanowire photodetectors. The specific detectivity of these devices can reach up to 1010 Jones. Additionally, the devices exhibit fast rise and decay time of 10.2 and 37.2 ms, respectively, and highly stable photoswitching behavior with their photoresponse well retaining under alternating light and darkness. This work opens up a new opportunity for stable and low-toxic perovskite-based optoelectronic applications.

Electronic Supplementary Material

Download File(s)
12274_2019_2454_MOESM1_ESM.pdf (855.8 KB)

References

1

Deng, Y. H.; Zheng, X. P.; Bai, Y.; Wang, Q.; Zhao, J. J.; Huang, J. S. Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules. Nat. Energy 2018, 3, 560-566.

2

Guo, Z.; Wan, Y.; Yang, M. J.; Snaider, J.; Zhu, K.; Huang, L. B. Long-range hot-carrier transport in hybrid perovskites visualized by ultrafast microscopy. Science 2017, 356, 59-62.

3

Liu, X. F.; Niu, L.; Wu, C. Y.; Cong, C. X.; Wang, H.; Zeng, Q. S.; He, H. Y.; Fu, Q. D.; Fu, W.; Yu, T. et al. Periodic organic-inorganic halide perovskite microplatelet arrays on silicon substrates for room-temperature lasing. Adv. Sci. 2016, 3, 1600137.

4

Lai, M. L.; Kong, Q.; Bischak, C. G.; Yu, Y.; Dou, L. T.; Eaton, S. W.; Ginsberg, N. S.; Yang, P. D. Structural, optical, and electrical properties of phase-controlled cesium lead iodide nanowires. Nano Res. 2017, 10, 1107-1114.

5

Lan, C. Y.; Zhou, Z. Y.; Wei, R. J.; Ho, J. C. Two-dimensional perovskite materials: From synthesis to energy-related applications. Mater. Today Energy 2019, 11, 61-82.

6

Mao, W. X.; Zheng, J. L.; Zhang, Y. P.; Chesman, A. S. R.; Ou, Q. D.; Hicks, J.; Li, F.; Wang, Z. Y.; Graystone, B.; Bell, T. D. M. et al. Controlled growth of monocrystalline organo-lead halide perovskite and its application in photonic devices. Angew. Chem., Int. Ed. 2017, 56, 12486-12491.

7

Li, Y. T.; Han, L.; Liu, Q.; Wang, W.; Chen, Y. G.; Lyu, M.; Li, X. M.; Sun, H.; Wang, H.; Wang, S. F. et al. Confined-solution process for high-quality CH3NH3PbBr3 single crystals with controllable morphologies. Nano Res. 2018, 11, 3306-3312.

8

Zhao, X. G.; Yang, D. W.; Ren, J. C.; Sun, Y. H.; Xiao, Z. W.; Zhang, L. J. Rational design of halide double perovskites for optoelectronic applications. Joule 2018, 2, 1662-1673.

9

Peng, W. B.; Yu, R. M.; Wang, X. F.; Wang, Z. N.; Zou, H. Y.; He, Y. N.; Wang, Z. L. Temperature dependence of pyro-phototronic effect on self-powered ZnO/perovskite heterostructured photodetectors. Nano Res. 2016, 9, 3695-3704.

10

Cao, F. R.; Tian, W.; Gu, B. K.; Ma, Y. L.; Lu, H.; Li, L. High-performance UV-vis photodetectors based on electrospun ZnO nanofiber-solution processed perovskite hybrid structures. Nano Res. 2017, 10, 2244-2256.

11

Bao, C. X.; Yang, J.; Bai, S.; Xu, W. D.; Yan, Z. B.; Xu, Q. Y.; Liu, J. M.; Zhang, W. J.; Gao, F. High performance and stable all-inorganic metal halide perovskite-based photodetectors for optical communication applications. Adv. Mater. 2018, 30, 1803422.

12

Dong, R. T.; Lan, C. Y.; Xu, X. W.; Liang, X. G.; Hu, X. Y.; Li, D. P.; Zhou, Z. Y.; Shu, L.; Yip, S.; Li, C. et al. Novel series of quasi-2D Ruddlesden-Popper perovskites based on short-chained spacer cation for enhanced photodetection. ACS Appl. Mater. Interfaces 2018, 10, 19019-19026.

13

Yang, Z.; Xu, Q.; Wang, X. D.; Lu, J. F.; Wang, H.; Li, F. T.; Zhang, L.; Hu, G. F.; Pan, C. F. Large and ultrastable all-inorganic CsPbBr3 monocrystalline films: Low-temperature growth and application for high-performance photodetectors. Adv. Mater. 2018, 30, 1802110.

14

Qi, X.; Zhang, Y. P.; Ou, Q. D.; Ha, S. T.; Qiu, C. W.; Zhang, H.; Cheng, Y. B.; Xiong, Q. H.; Bao, Q. L. Photonics and optoelectronics of 2D metal-halide perovskites. Small 2018, 14, 1800682.

15

Zhao, X. G.; Yang, J. H.; Fu, Y. H.; Yang, D. W.; Xu, Q. L.; Yu, L. P.; Wei, S. H.; Zhang, L. J. Design of lead-free inorganic halide perovskites for solar cells via cation-transmutation. J. Am. Chem. Soc. 2017, 139, 2630-2638.

16

Wang, X. X.; Shoaib, M.; Wang, X.; Zhang, X. H.; He, M.; Luo, Z. Y.; Zheng, W. H.; Li, H. L.; Yang, T. F.; Zhu, X. L. et al. High-quality in-plane aligned CsPbX3 perovskite nanowire lasers with composition-dependent strong exciton-photon coupling. ACS Nano 2018, 12, 6170-6178.

17

Zhong, Y. G.; Wei, Q.; Liu, Z.; Shang, Q. Y.; Zhao, L. Y.; Shao, R. W.; Zhang, Z. P.; Chen, J.; Du, W. N.; Shen, C. et al. Low threshold fabry-pérot mode lasing from lead iodide trapezoidal nanoplatelets. Small 2018, 14, 1801938.

18

Hu, W.; Huang, W.; Yang, S. Z.; Wang, X.; Jiang, Z. Y.; Zhu, X. L.; Zhou, H.; Liu, H. J.; Zhang, Q. L.; Zhuang, X. J. et al. High-performance flexible photodetectors based on high-quality perovskite thin films by a vapor-solution method. Adv. Mater. 2017, 29, 1703256.

19

Song, J. Z.; Xu, L. M.; Li, J. H.; Xue, J.; Dong, Y. H.; Li, X. M.; Zeng, H. B. Monolayer and few-layer all-inorganic perovskites as a new family of two-dimensional semiconductors for printable optoelectronic devices. Adv. Mater. 2016, 28, 4861-4869.

20

Zhang, H. J.; Xu, Y. D.; Sun, Q. H.; Dong, J. P.; Lu, Y. F.; Zhang, B. B.; Jie, W. Q. Lead free halide perovskite Cs3Bi2I9 bulk crystals grown by a low temperature solution method. CrystEngComm 2018, 20, 4935-4941.

21

Park, B. W.; Philippe, B.; Zhang, X. L.; Rensmo, H.; Boschloo, G.; Johansson, E. M. J. Bismuth based hybrid perovskites A3Bi2I9 (A: methylammonium or cesium) for solar cell application. Adv. Mater. 2015, 27, 6806-6813.

22

Cuhadar, C.; Kim, S. G.; Yang, J. M.; Seo, J. Y.; Lee, D.; Park, N. G. All-inorganic bismuth halide perovskite-like materials A3Bi2I9 and A3Bi1.8Na0.2I8. 6 (A = Rb and Cs) for low-voltage switching resistive memory. ACS Appl. Mater. Interfaces 2018, 10, 29741-29749.

23

Saparov, B.; Hong, F.; Sun, J. P.; Duan, H. S.; Meng, W. W.; Cameron, S.; Hill, I. G.; Yan, Y. F.; Mitzi, D. B. Thin-film preparation and characterization of Cs3Sb2I9: A lead-free layered perovskite semiconductor. Chem. Mater. 2015, 27, 5622-5632.

24

Jiang, F. Y.; Yang, D. W.; Jiang, Y. Y.; Liu, T. F.; Zhao, X. G.; Ming, Y.; Luo, B. W.; Qin, F.; Fan, J. C.; Han, H. W. et al. Chlorine-incorporation-induced formation of the layered phase for antimony-based lead-free perovskite solar cells. J. Am. Chem. Soc. 2018, 140, 1019-1027.

25

Yang, B.; Chen, J. S.; Hong, F.; Mao, X.; Zheng, K. B.; Yang, S. Q.; Li, Y. J.; Pullerits, T.; Deng, W. Q.; Han, K. L. Lead-free, air-stable all-inorganic cesium bismuth halide perovskite nanocrystals. Angew. Chem., Int. Ed. 2017, 56, 12471-12475.

26

Tsivion, D.; Schvartzman, M.; Popovitz-Biro, R.; Von Huth, P.; Joselevich, E. Guided growth of millimeter-long horizontal nanowires with controlled orientations. Science 2011, 333, 1003-1007.

27

Leguy, A. M. A.; Hu, Y. H.; Campoy-Quiles, M.; Alonso, M. I.; Weber, O. J.; Azarhoosh, P.; Van Schilfgaarde, M.; Weller, M. T.; Bein, T.; Nelson, J. et al. Reversible hydration of CH3NH3PbI3 in films, single crystals, and solar cells. Chem. Mater. 2015, 27, 3397-3407.

28

Qian, M.; Li, M.; Shi, X. B.; Ma, H.; Wang, Z. K.; Liao, L. S. Planar perovskite solar cells with 15.75% power conversion efficiency by cathode and anode interfacial modification. J. Mater. Chem. A 2015, 3, 13533-13539.

29

Zhang, Z.; Li, X. W.; Xia, X. H.; Wang, Z.; Huang, Z. B.; Lei, B. L.; Gao, Y. High-quality (CH3NH3)3Bi2I9 film-based solar cells: Pushing efficiency up to 1.64%. J. Phys. Chem. Lett. 2017, 8, 4300-4307.

30

Phuyal, D.; Jain, S. M.; Philippe, B.; Johansson, M. B.; Pazoki, M.; Kullgren, J.; Kvashnina, K. O.; Klintenberg, M.; Johansson, E. M. J.; Butorin, S. M. et al. The electronic structure and band interface of cesium bismuth iodide on a titania heterostructure using hard X-ray spectroscopy. J. Mater. Chem. A 2018, 6, 9498-9505.

31

Pal, J.; Bhunia, A.; Chakraborty, S.; Manna, S.; Das, S.; Dewan, A.; Datta, S.; Nag, A. Synthesis and optical properties of colloidal M3Bi2I9 (M = Cs, Rb) perovskite nanocrystals. J. Phys. Chem. C 2018, 122, 10643-10649.

32

Ghosh, B.; Wu, B.; Mulmudi, H. K.; Guet, C.; Weber, K.; Sum, T. C.; Mhaisalkar, S.; Mathews, N. Limitations of Cs3Bi2I9 as lead-free photovoltaic absorber materials. ACS Appl. Mater. Interfaces 2018, 10, 35000-35007.

33

Rajamanickam, N.; Kumari, S.; Vendra, V. K.; Lavery, B. W.; Spurgeon, J.; Druffel, T.; Sunkara, M. K. Stable and durable CH3NH3PbI3 perovskite solar cells at ambient conditions. Nanotechnology 2016, 27, 235404.

34

Khazaee, M.; Sardashti, K.; Sun, J. P.; Zhou, H. H.; Clegg, C.; Hill, I. G.; Jones, J. L.; Lupascu, D. C.; Mitzi, D. B. A versatile thin-film deposition method for multidimensional semiconducting bismuth halides. Chem. Mater. 2018, 30, 3538-3544.

35

Hong, K. H.; Kim, J.; Debbichi, L.; Kim, H.; Im, S. H. Band gap engineering of Cs3Bi2I9 perovskites with trivalent atoms using a dual metal cation. J. Phys. Chem. C 2017, 121, 969-974.

36

Gu, J. Y.; Yan, G. B.; Lian, Y. B.; Mu, Q. Q.; Jin, H. D.; Zhang, Z. C.; Deng, Z.; Peng, Y. Bandgap engineering of a lead-free defect perovskite Cs3Bi2I9 through trivalent doping of Ru3+. RSC Adv. 2018, 8, 25802-25807.

37

McCall, K. M.; Stoumpos, C. C.; Kostina, S. S.; Kanatzidis, M. G.; Wessels, B. W. Strong electron-phonon coupling and self-trapped excitons in the defect halide perovskites A3M2I9 (A = Cs, Rb; M = Bi, Sb). Chem. Mater. 2017, 29, 4129-4145.

38

Zhang, Q. L.; Zhu, X. L.; Li, Y. Y.; Liang, J. W.; Chen, T. R.; Fan, P.; Zhou, H.; Hu, W.; Zhuang, X. J.; Pan, A. L. Nanolaser arrays based on individual waved CdS nanoribbons. Laser Photonics Rev. 2016, 10, 458-464.

39

Wang, X. X.; Zhou, H.; Yuan, S. P.; Zheng, W. H.; Jiang, Y.; Zhuang, X. J.; Liu, H. J.; Zhang, Q. L.; Zhu, X. L.; Wang, X. et al. Cesium lead halide perovskite triangular nanorods as high-gain medium and effective cavities for multiphoton-pumped lasing. Nano Res. 2017, 10, 3385-3395.

40

Fang, H. H.; Hu, W. D. Photogating in low dimensional photodetectors. Adv. Sci. 2017, 4, 1700323.

41

Wang, J. L.; Fang, H. H.; Wang, X. D.; Chen, X. S.; Lu, W.; Hu, W. D. Recent progress on localized field enhanced two-dimensional material photodetectors from ultraviolet-visible to infrared. Small 2017, 13, 1700894.

42

Wang, Y. S.; Zhang, Y. P.; Lu, Y.; Xu, W. D.; Mu, H. R.; Chen, C. Y.; Qiao, H.; Song, J. C.; Li, S. J.; Sun, B. Q. et al. Hybrid graphene-perovskite phototransistors with ultrahigh responsivity and gain. Adv. Opt. Mater. 2015, 3, 1389-1396.

43

Xu, J. Y.; Rechav, K.; Popovitz-Biro, R.; Nevo, I.; Feldman, Y.; Joselevich, E. High-gain 200 ns photodetectors from self-aligned CdS-CdSe core-shell nanowalls. Adv. Mater. 2018, 30, 1800413.

44

Horváth, E.; Spina, M.; Szekrényes, Z.; Kamarás, K.; Gaal, R.; Gachet, D.; Forró, L. Nanowires of methylammonium lead iodide (CH3NH3PbI3) prepared by low temperature solution-mediated crystallization. Nano Lett. 2014, 14, 6761-6766.

45

Dong, Y. H.; Gu, Y.; Zou, Y. S.; Song, J. Z.; Xu, L. M.; Li, J. H.; Xue, J.; Li, X. M.; Zeng, H. B. Improving all-inorganic perovskite photodetectors by preferred orientation and plasmonic effect. Small 2016, 12, 5622-5632.

46

Dou, L. T.; Yang, Y. M.; You, J. B.; Hong, Z. R.; Chang, W. H.; Li, G.; Yang, Y. Solution-processed hybrid perovskite photodetectors with high detectivity. Nat. Commun. 2014, 5, 5404.

47

Ding, J. X.; Du, S. J.; Zuo, Z. Y.; Zhao, Y.; Cui, H. Z.; Zhan, X. Y. High detectivity and rapid response in perovskite CsPbBr3 single-crystal photodetector. J. Phys. Chem. C 2017, 121, 4917-4923.

48

Lee, Y.; Kwon, J.; Hwang, E.; Ra, C. H.; Yoo, W. J.; Ahn, J. H.; Park, J. H.; Cho, J. H. High-performance perovskite-graphene hybrid photodetector. Adv. Mater. 2015, 27, 41-46.

49

Feng, W.; Wu, J. B.; Li, X. L.; Zheng, W.; Zhou, X.; Xiao, K.; Cao, W. W.; Yang, B.; Idrobo, J. C.; Basile, L. et al. Ultrahigh photo-responsivity and detectivity in multilayer InSe nanosheets phototransistors with broadband response. J. Mater. Chem. C 2015, 3, 7022-7028.

50

Wang, H.; Kim, D. H. Perovskite-based photodetectors: Materials and devices. Chem. Soc. Rev. 2017, 46, 5204-5236.

51

Cao, M.; Tian, J. Y.; Cai, Z.; Peng, L.; Yang, L.; Wei, D. C. Perovskite heterojunction based on CH3NH3PbBr3 single crystal for high-sensitive self-powered photodetector. Appl. Phys. Lett. 2016, 109, 233303.

52

Luo, W. G.; Cao, Y. F.; Hu, P. A.; Cai, K. M.; Feng, Q.; Yan, F. G.; Yan, T. F.; Zhang, X. H.; Wang, K. Y. Gate tuning of high-performance inse-based photodetectors using graphene electrodes. Adv. Opt. Mater. 2015, 3, 1418-1423.

53

Cao, Y. F.; Cai, K. M.; Hu, P. A.; Zhao, L. X.; Yan, T. F.; Luo, W. G.; Zhang, X. H.; Wu, X. G.; Wang, K. Y.; Zheng, H. Z. Strong enhancement of photoresponsivity with shrinking the electrodes spacing in few layer GaSe photodetectors. Sci. Rep. 2015, 5, 8130.

Nano Research
Pages 1894-1899
Cite this article:
Qi Z, Fu X, Yang T, et al. Highly stable lead-free Cs3Bi2I9 perovskite nanoplates for photodetection applications. Nano Research, 2019, 12(8): 1894-1899. https://doi.org/10.1007/s12274-019-2454-0
Topics:

969

Views

122

Crossref

N/A

Web of Science

117

Scopus

6

CSCD

Altmetrics

Received: 27 April 2019
Revised: 02 June 2019
Accepted: 03 June 2019
Published: 13 June 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return