Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Graphitic carbon nitride (g-C3N4) has become an attractive visible-light-responsive photocatalyst because of its semiconductor polymer compositions and easy-modulated band structure. However, the bulk g-C3N4 photocatalyst has the low separation efficiency of photogenerated carriers and unsatisfied surface catalytic performance, which leads to poor photocatalytic performance. As for this, MgTi2O5 with high chemical stability, wide band gap and negative conduction band was used as a suitable platform for coupling with g-C3N4 to enhance charge separation and promoted the photoactivity. Different from common approaches, here, we propose an innovative method to construct g-C3N4/MgTi2O5 nanocomposites featuring "0 + 1 > 1" magnification effect to improve g-C3N4 photocatalytic performance under visible light irradiation. Additionally, compositing metal oxides of MgTi2O5 with g-C3N4 has proven to be a proper strategy to accelerate surface catalytic reactions in g-C3N4, and the photoinduced carriers were modulated to maintain thermodynamic equilibrium, which convincingly promotes the photocatalytic activity. The photocatalytic performance of the nanocomposites was measured by hydrogen production and CO2 reduction under visible light. The developed g-C3N4/MgTi2O5 nanocomposites with a 5 wt.% MgTi2O5 exhibits the highest H2 and CO yield under visible light and excellent stability compare to the other MgTi2O5 contents in composites. According to surface photo-voltage spectra, electrochemical CO2 reduction, photoluminescence, etc. The superior performance can be related to an enhanced electron lifetime, the promoted charge transfer and the increased electronic separation property of g-C3N4. Our work provides an approach to overcome the defect of pure g-C3N4, which accesses to composite with the second component matched well.
Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37-38.
Muhammad, N. A.; Wang, Y. J.; Muhammad, F. E.; He, T. Photoreduction of carbon dioxide using strontium zirconate nanoparticles. Sci. China Mater. 2015, 58, 634-639.
Meng, X. G.; Zuo, G. F.; Zong, P. X.; Pang, H.; Ren, J.; Zeng, X. F.; Liu, S. S.; Shen, Y.; Zhou, W.; Ye, J. H. A rapidly room-temperature-synthesized Cd/ZnS: Cu nanocrystal photocatalyst for highly efficient solar-light-powered CO2 reduction. Appl. Catal. B: Environ. 2018, 237, 68-73.
Lei, Y. P.; Shi, Q.; Han, C.; Wang, B.; Wu, N.; Wang, H.; Wang, Y. D. N-doped graphene grown on silk cocoon-derived interconnected carbon fibers for oxygen reduction reaction and photocatalytic hydrogen production. Nano Res. 2016, 9, 2498-2509.
Habisreutinger, S. N.; Schmidt-Mende, L.; Stolarczyk, J. K. Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew. Chem., Int. Ed. 2013, 52, 7372-7408.
Shan, J. J.; Raziq, F.; Humayun, M.; Zhou, W.; Qu, Y.; Wang, G. F.; Li, Y. D. Improved charge separation and surface activation via boron-doped layered polyhedron SrTiO3 for co-catalyst free photocatalytic CO2 conversion. Appl. Catal. B: Environ. 2017, 219, 10-17.
Jang, Y. J.; Jang, J. W.; Lee, J.; Kim, J. H.; Kumagai, H.; Lee, J.; Minegishi, T.; Kubota, J.; Domen, K.; Lee, J. S. Selective CO production by Au coupled ZnTe/ZnO in the photoelectrochemical CO2 reduction system. Energy Environ. Sci. 2015, 8, 3597-3604.
Zhang, N.; Qu, Y.; Pan, K.; Wang, G. F.; Li, Y. D. Synthesis of pure phase Mg1.2Ti1.8O5 and MgTiO3 nanocrystals for photocatalytic hydrogen production. Nano Res. 2016, 9, 726-734.
Wang, D. S.; Xie, T.; Li, Y. D. Nanocrystals: Solution-based synthesis and applications as nanocatalysts. Nano Res. 2009, 2, 30-46.
Zhu, M. S.; Chen, P. L.; Liu, M. H. Visible-light-driven Ag/Ag3PO4-based plasmonic photocatalysts: Enhanced photocatalytic performance by hybridization with graphene oxide. Chin. Sci. Bull. 2013, 58, 84-91.
Wang, H. T.; Wu, X.; Zhao, H. M.; Quan, X. Enhanced photocatalytic degradation of tetracycline hydrochloride by molecular imprinted film modified TiO2 nanotubes. Chin. Sci. Bull. 2012, 57, 601-605.
Zhang, X. D.; Wang, H. X.; Wang, H.; Zhang, Q.; Xie, J. F.; Tian, Y. P.; Wang, J.; Xie, Y. Single-layered graphitic-C3N4 quantum dots for two-photon fluorescence imaging of cellular nucleus. Adv. Mater. 2014, 26, 4438-4443.
Chen, D. D.; Wu, I. C.; Liu, Z. H.; Tang, Y.; Chen, H. B.; Yu, J. B.; Wu, C. F.; Chiu, D. T. Semiconducting polymer dots with bright narrow-band emission at 800 nm for biological applications. Chem. Sci. 2017, 8, 3390-3398.
Sun, K.; Yang, Y. K.; Zhou, H.; Yin, S. Y.; Qin, W. P.; Yu, J. B.; Chiu, D. T.; Yuan, Z.; Zhang, X. J.; Wu, C. F. Ultrabright polymer-dot transducer enabled wireless glucose monitoring via a smartphone. ACS Nano 2018, 12, 5176-5184.
Tang, S. F.; Yin, X. P.; Wang, G. Y.; Lu, X. L.; Lu, T. B. Single titanium-oxide species implanted in 2D g-C3N4 matrix as a highly efficient visible-light CO2 reduction photocatalyst. Nano Res. 2019, 12, 457-462.
Peng, W. C.; Li, X. Y. Synthesis of a sulfur-graphene composite as an enhanced metal-free photocatalyst. Nano Res. 2013, 6, 286-292.
Xiao, M.; Luo, B.; Wang, S. C.; Wang, L. Z. Solar energy conversion on g-C3N4 photocatalyst: Light harvesting, charge separation, and surface kinetics. J. Energy Chem. 2018, 27, 1111-1123.
Fu, J. W.; Yu, J. G.; Jiang, C. J.; Cheng, B. g-C3N4-based heterostructured photocatalysts. Adv. Energy Mater. 2018, 8, 1701503.
Wang, Y. Y.; Bai, L. L.; Zhang, Z. Q.; Qu, Y.; Jing, L. Q. Improved visible-light photoactivity of Pt/g-C3N4 nanosheets for solar fuel production via pretreated boric acid modification. Res. Chem. Intermed. 2019, 45, 249-259.
Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76-80.
Liu, W.; Cao, L. L.; Cheng, W. R.; Cao, Y. J.; Liu, X. K.; Zhang, W.; Mou, X. L.; Jin, L. L.; Zheng, X. S.; Che, W. et al. Single-site active cobalt-based photocatalyst with a long carrier lifetime for spontaneous overall water splitting. Angew. Chem., Int. Ed. 2017, 56, 9312-9317.
Zhang, P.; Ochi, T.; Fujitsuka, M.; Kobori, Y.; Majima, T.; Tachikawa, T. Topotactic epitaxy of SrTiO3 mesocrystal superstructures with anisotropic construction for efficient overall water splitting. Angew. Chem., Int. Ed. 2017, 56, 5299-5303.
Wan, J. W.; Chen, W. X.; Jia, C. Y.; Zheng, L. R.; Dong, J. C.; Zheng, X. S.; Wang, Y.; Yan, W. S.; Chen, C.; Peng, Q. et al. Defect effects on TiO2 nanosheets: Stabilizing single atomic site Au and promoting catalytic properties. Adv. Mater. 2018, 30, 1705369.
Waqas, M.; Wei, Y. Z.; Mao, D.; Qi, J.; Yang, Y.; Wang, B.; Wang, D. Multi-shelled TiO2/Fe2TiO5 heterostructured hollow microspheres for enhanced solar water oxidation. Nano Res. 2017, 10, 3920-3928.
Han, C.; Wang, Y. D.; Lei, Y. P.; Wang, B.; Wu, N.; Shi, Q.; Li, Q. In situ synthesis of graphitic-C3N4 nanosheet hybridized N-doped TiO2 nanofibers for efficient photocatalytic H2 production and degradation. Nano Res. 2015, 8, 1199-1209.
Herlihy, D. M.; Waegele, M. M.; Chen, X. H.; Pemmaraju, C. D.; Prendergast, D.; Cuk, T. Detecting the oxyl radical of photocatalytic water oxidation at an n-SrTiO3/aqueous interface through its subsurface vibration. Nat. Chem. 2016, 8, 549-555.
Han, C.; Lei, Y. P.; Wang, B.; Wu, C. Z.; Zhang, X. S.; Shen, S. J.; Sun, L.; Tian, Q.; Feng, Q. G.; Wang, Y. D. The functionality of surface hydroxyls on selective CH4 generation from photoreduction of CO2 over SiC nanosheets. Chem. Commun. 2019, 55, 1572-1575.
Wang, B.; Wang, Y. D.; Lei, Y. P.; Wu, N.; Gou, Y. Z.; Han, C.; Xie, S.; Fang, D. Mesoporous silicon carbide nanofibers with in situ embedded carbon for co-catalyst free photocatalytic hydrogen production. Nano Res. 2016, 9, 886-898.
Qu, Y.; Zhou, W.; Xie, Y.; Jiang, L.; Wang, J. Q.; Tian, G. H.; Ren, Z. Y.; Tian, C. H.; Fu, H. G. A novel phase-mixed MgTiO3-MgTi2O5 heterogeneous nanorod for high efficiency photocatalytic hydrogen production. Chem. Commun. 2013, 49, 8510-8512.
Wu, N. Q.; Wang, J.; Tafen, D. N.; Wang, H.; Zheng, J. G.; Lewis, J. P.; Liu, X. G.; Leonard, S. S.; Manivannan, A. Shape-enhanced photocatalytic activity of single-crystalline anatase TiO2 (101) nanobelts. J. Am. Chem. Soc. 2010, 132, 6679-6685.
Cui, Q. Z.; Dong, X. T.; Wang, J. X.; Li, M. Direct fabrication of cerium oxide hollow nanofibers by electrospinning. J. Rare Earths 2008, 26, 664-669.
Cheng, L.; Liu, P.; Qu, S. X.; Cheng, L.; Zhang, H. W. Microwave dielectric properties of Mg2TiO4 ceramics synthesized via high energy ball milling method. J. Alloys Compd. 2015, 623, 238-242.
Ullah, U.; Ali, W. F. F. W.; Ain, M. F.; Mahyuddin, N. M.; Ahmad, Z. A. Design of a novel dielectric resonator antenna using MgTiO3-CoTiO3 for wideband applications. Mater. Des. 2015, 85, 396-403.
Zhao, B.; Liu, Z. R.; Liu, Z. L.; Liu, G. X.; Li, Z.; Wang, J. X.; Dong, X. T. Silver microspheres for application as hydrogen peroxide sensor. Electrochem. Commun. 2009, 11, 1707-1710.
Ma, Y. X.; Li, H.; Peng, S.; Wang, L. Y. Highly selective and sensitive fluorescent paper sensor for nitroaromatic explosive detection. Anal. Chem. 2012, 84, 8415-8421.
Meng, L.; Ren, Z. Y.; Zhou, W.; Qu, Y.; Wang, G. F. MgTiO3/MgTi2O5/TiO2 heterogeneous belt-junctions with high photocatalytic hydrogen production activity. Nano Res. 2017, 10, 295-304.
Zhang, N.; Zhang, K. F.; Zhou, W.; Jiang, B. J.; Pan, K.; Qu, Y.; Wang, G. F. Pure phase orthorhombic MgTi2O5 photocatalyst for H2 production. RSC Adv. 2015, 5, 106151-106155.
Mortazavi-Derazkola, S.; Salavati-Niasari, M.; Amiri, O.; Abbasi, A. Fabrication and characterization of Fe3O4@SiO2@TiO2@Ho nanostructures as a novel and highly efficient photocatalyst for degradation of organic pollution. J. Energy Chem. 2017, 26, 17-23.