Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The clinical translation of nanomedicine is hindered by the low delivery efficiency, and consequently drug concentration in tumor sites falls short of the therapeutic effective range which leads to poor clinical outcomes. One important lesson learned from the development of antibody-drug-conjugates (ADCs) is that to achieve significant clinical benefits, extremely potent cytotoxic agents and cleavable linkers should be used. By encapsulating maytansinoid, AP3, which is 100–1, 000 times more potent than most conventional small molecule anticancer drugs, in pH-sensitive acetalated dextran-polyethylene glycol (PEG) (ADP) nanocarriers, even with only 1% drug loading, we were able to eradicate tumors in 50% of tested animals with negligible side effects, while free AP3 only showed marginal efficacy and severe liver damages. This study suggests that besides improving the low efficiency of nano-delivery systems, the potency of drug to be delivered is also critical to the clinical outcomes of nanomedicine. Our results also showed that ADP nanoparticles (NPs) were able to expand the narrow therapeutic window of maytansinoids in a similar manner to the ADCs.
Shi, J. J.; Kantoff, P. W.; Wooster, R.; Farokhzad, O. C. Cancer nanomedicine: Progress, challenges and opportunities. Nat. Rev. Cancer 2017, 17, 20-37.
Wilhelm, S.; Tavares, A. J.; Dai, Q.; Ohta, S.; Audet, J.; Dvorak, H. F.; Chan, W. C. W. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 2016, 1, 16014.
Ledford, H. Bankruptcy filing worries developers of nanoparticle cancer drugs. Nature 2016, 533, 304-305.
Park, K. Facing the truth about nanotechnology in drug delivery. ACS Nano 2013, 7, 7442-7447.
Lu, Y.; Aimetti, A. A.; Langer, R.; Gu, Z. Bioresponsive materials. Nat. Rev. Mater. 2016, 2, 16075.
Liu, Y.; Xu, C. F.; Iqbal, S.; Yang, X. Z.; Wang, J. Responsive nanocarriers as an emerging platform for cascaded delivery of nucleic acids to cancer. Adv. Drug Deliv. Rev. 2017, 115, 98-114.
Wang, C. S.; Zhao, T.; Li, Y.; Huang, G.; White, M. A.; Gao, J. M. Investigation of endosome and lysosome biology by ultra pH-sensitive nanoprobes. Adv. Drug Deliv. Rev. 2017, 113, 87-96.
Perez, H. L.; Cardarelli, P. M.; Deshpande, S.; Gangwar, S.; Schroeder, G. M.; Vite, G. D.; Borzilleri, R. M. Antibody-drug conjugates: Current status and future directions. Drug Discovery Today 2014, 19, 869-881.
Chari, R. V. J. Targeted cancer therapy: Conferring specificity to cytotoxic drugs. Acc. Chem. Res. 2008, 41, 98-107.
Chari, R. V. J.; Miller, M. L.; Widdison, W. C. Antibody-drug conjugates: An emerging concept in cancer therapy. Angew. Chem., Int. Ed. 2014, 53, 3796-3827.
Widdison, W. C.; Wilhelm, S. D.; Cavanagh, E. E.; Whiteman, K. R.; Leece, B. A.; Kovtun, Y.; Goldmacher, V. S.; Xie, H. S.; Steeves, R. M.; Lutz, R. J. et al. Semisynthetic maytansine analogues for the targeted treatment of cancer. J. Med. Chem. 2006, 49, 4392-4408.
Beck, A.; Goetsch, L.; Dumontet, C.; Corvaia, N. Strategies and challenges for the next generation of antibody-drug conjugates. Nat. Rev. Drug Discovery 2017, 16, 315-337.
Heinze, T.; Liebert, T.; Heublein, B.; Hornig, S. Functional polymers based on dextran. In Polysaccharides Ⅱ; Klemm, D., Ed.; Springer: Berlin, Heidelberg, 2006; pp 199-291.
Bachelder, E. M.; Beaudette, T. T.; Broaders, K. E.; Dashe, J.; Fréchet, J. M. J. Acetal-derivatized dextran: An acid-responsive biodegradable material for therapeutic applications. J. Am. Chem. Soc. 2008, 130, 10494-10495.
Yokoyama, M.; Opanasopit, P.; Okano, T.; Kawano, K.; Maitani, Y. Polymer design and incorporation methods for polymeric micelle carrier system containing water-insoluble anti-cancer agent camptothecin. J. Drug Target. 2004, 12, 373-384.
Tang, X. L.; Dai, H.; Zhu, Y. X.; Tian, Y.; Zhang, R. B.; Mei, R. B.; Li D. Q. Maytansine-loaded star-shaped folate-core PLA-TPGS nanoparticles enhancing anticancer activity. Am. J. Transl. Res. 2014, 6, 528-537.
Passirani, C.; Barratt, G.; Devissaguet, J. P.; Labarre, D. Long-circulating nanopartides bearing heparin or dextran covalently bound to poly(methyl methacrylate). Pharm. Res. 1998, 15, 1046-1050.
Poon, Z.; Lee, J. A.; Huang, S. W.; Prevost, R. J.; Hammond, P. T. Highly stable, ligand-clustered "patchy" micelle nanocarriers for systemic tumor targeting. Nanomed. : Nanotechnol. , Biol. Med. 2011, 7, 201-209.
Blum, R. H.; Wittenberg, B. K.; Canellos, G. P.; Mayer, R. J.; Skarin, A. T.; Henderson, I. C.; Parker, L. M.; Frei Ⅲ, E. A therapeutic trial of maytansine. Cancer Clin. Trials 1978, 1, 113-117.
Kupchan, S. M.; Komoda, Y.; Court, W. A.; Thomas, G. J.; Smith, R. M.; Karim, A.; Gilmore, C. J.; Haltiwanger, R. C.; Bryan, R. F. Maytansine, a novel antileukemic Ansa macrolide from maytenus ovatus. J. Am. Chem. Soc. 1972, 94, 1354-1356.
Remillard, S.; Rebhun, L. I.; Howie, G. A.; Kupchan, S. M. Antimitotic activity of the potent tumor inhibitor maytansine. Science 1975, 189, 1002-1005.
Cassady, J. M.; Chan, K. K.; Floss, H. G.; Leistner, E. Recent developments in the maytansinoid antitumor agents. Chem. Pharm. Bull. 2004, 52, 1-26.
De Goeij, B. E. C. G.; Lambert, J. M. New developments for antibody-drug conjugate-based therapeutic approaches. Curr. Opin. Immunol. 2016, 40, 14-23.
Lopus, M. Antibody-DM1 conjugates as cancer therapeutics. Cancer Lett. 2011, 307, 113-118.
Diéras, V.; Miles, D.; Verma, S.; Pegram, M.; Welslau, M.; Baselga, J.; Krop, I. E.; Blackwell, K.; Hoersch, S.; Xu, J. et al. Trastuzumab emtansine versus capecitabine plus lapatinib in patients with previously treated HER2-positive advanced breast cancer (EMILIA): A descriptive analysis of final overall survival results from a randomised, open-label, phase 3 trial. Lancet Oncol. 2017, 18, 732-742.
Krop, I. E.; Kim, S. B.; González-Martín, A.; LoRusso, P. M.; Ferrero, J. M.; Smitt, M.; Yu, R.; Leung, A. C. F.; Wildiers, H. On behalf of the TH3RESA study collaborators. Trastuzumab emtansine versus treatment of physician's choice for pretreated HER2-positive advanced breast cancer (TH3RESA): A randomised, open-label, phase 3 trial. Lancet Oncol. 2014, 15, 689-699.
FDA. FDA News Release: FDA Approves New Treatment for Late-Stage Breast Cancer [Online]. 2013. http://www.fda.gov/newsevents/newsroom/pressannouncements/ucm340704.htm (accessed Feb 22, 2013).
Naessens, M.; Cerdobbel, A.; Soetaert, W.; Vandamme, E. J. Dextran dextrinase and dextran of Gluconobacter oxydans. J. Ind. Microbiol. Biotechnol. 2005, 32, 323-334.
De Paula, R. C. M.; Feitosa, J. P. A.; Paula, H. C. B. Polysaccharide based copolymers as supramolecular systems in biomedical applications. Curr. Drug Targets 2015, 16, 1591-1605.
Raemdonck, K.; Martens, T. F.; Braeckmans, K.; Demeester, J.; De Smedt, S. C. Polysaccharide-based nucleic acid nanoformulations. Adv. Drug Deliv. Rev. 2013, 65, 1123-1147.
De Muynck, C.; Pereira, C. S. S.; Naessens, M.; Parmentier, S.; Soetaert, W.; Vandamme, E. J. The genus Gluconobacter oxydans: Comprehensive overview of biochemistry and biotechnological applications. Crit. Rev. Biotechnol. 2007, 27, 147-171.
Gillies, E. R.; Goodwin, A. P.; Fréchet, J. M. J. Acetals as pH-sensitive linkages for drug delivery. Bioconjugate Chem. 2004, 15, 1254-1263.
Chen, N. H.; Collier, M. A.; Gallovic, M. D.; Collins, G. C.; Sanchez, C. C.; Fernandes, E. Q.; Bachelder, E. M.; Ainslie, K. M. Degradation of acetalated dextran can be broadly tuned based on cyclic acetal coverage and molecular weight. Int. J. Pharmaceut. 2016, 512, 147-157.
Kauffman, K. J.; Do, C.; Sharma, S.; Gallovic, M. D.; Bachelder E. M.; Ainslie, K. M. Synthesis and characterization of acetalated dextran polymer and microparticles with ethanol as a degradation product. ACS Appl. Mater. Interfaces 2012, 4, 4149-4155.
Greenwald, R. B.; Choe, Y. H.; McGuire, J.; Conover, C. D. Effective drug delivery by PEGylated drug conjugates. Adv. Drug Deliv. Rev. 2003, 55, 217-250.
Xie, H. S.; Audette, C.; Hoffee, M.; Lambert, J. M.; Blättler, W. A. Pharmacokinetics and biodistribution of the antitumor immunoconjugate, cantuzumab mertansine (huC242-DM1), and its two components in mice. J. Pharmacol. Exp. Ther. 2004, 310, 1073-1082.
Issell, B. F.; Crooke, S. T. Maytansine. Cancer Treat. Rev. 1978, 5, 199-207.
Knorr, V.; Allmendinger, L.; Walker, G. F.; Paintner, F. F.; Wagner, E. An acetal-based PEGylation reagent for pH-sensitive shielding of DNA polyplexes. Bioconjug. Chem. 2007, 18, 1218-1225.
Luo, D. D.; Li, N. S.; Carter, K. A.; Lin, C. Y.; Geng, J. M.; Shao, S.; Huang, W. C.; Qin, Y. L.; Atilla-Gokcumen, G. E.; Lovell, J. F. Rapid light-triggered drug release in liposomes containing small amounts of unsaturated and porphyrin-phospholipids. Small. 2016, 12, 3039-3047.
Mitruka, B. M.; Rawnsley, H. M. Clinical, Biochemical and Hematological Reference Values in Normal Experimental Animals and Normal Humans; Masson Publishing: New York, 1981; p 413.
Harkness, J. E.; Wagner, J. E. Biology and husbandry. In The Biology and Medicine of Rabbits and Rodents, 3rd ed.; Harkness, E. J.; Wagner, E. J., Eds.; Lea & Febiger: Beckenham, 1989; p 372.
Kim, Y. R.; Savellano, M. D.; Savellano, D. H.; Weissleder, R.; Bogdanov, A. Jr. Measurement of tumor interstitial volume fraction: Method and implication for drug delivery. Magn. Reson. Med. 2004, 52, 485-494.
Brand, W.; Noorlander, C. W.; Giannakou, C.; De Jong, W. H.; Kooi, M. W.; Park, M. V.; Vandebriel, R. J.; Bosselaers, I. E.; Scholl, J. H.; Geertsma, R. E. Nanomedicinal products: A survey on specific toxicity and sideeffects. Int. J. Nanomedicine 2017, 12, 6107-6129.
Owens Ⅲ, D. E.; Peppas, N. A. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm. 2006, 307, 93-102.