AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Nanotechnology based CRISPR/Cas9 system delivery for genome editing: Progress and prospect

Huan Deng1<Wei Huang2<Zhiping Zhang1,3,4( )
Tongji School of Pharmacy,Tongji Medical College, Huazhong University of Science and Technology,Wuhan,430030,China;
Department of Orthopedics,Union Hospital, Tongji Medical College, Huazhong University of Science and Technology,Wuhan,430030,China;
National Engineering Research Center for Nanomedicine,Huazhong University of Science and Technology,Wuhan,430030,China;
Hubei Engineering Research Center for Novel Drug Delivery System,Huazhong University of Science and Technology,Wuhan,430030,China;

§ Huan Deng and Wei Huang contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

The genome editing tool, clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system, has achieved successful therapeutic efficacy via precise modification of the genome and exceeded previous genome engineering methods owing to its versatility and simplicity. Rapid expansion in biomedical research has benefited from this newly emerged technique, such as genetic diseases treatment, cancer characterization, and plant improvement. However, the key challenge is efficient delivery of CRISPR components in vivo and nanotechnology plays an indispensable role in nonviral gene delivery. In this review, we will first briefly describe the mechanism and delivery strategies of CRISPR/Cas9 system. Furthermore, the past and current researches of nanoparticles based CRISPR/Cas9 system delivery for genome editing will be highlighted. Finally, we will discuss the challenges and prospects of CRISPR/Cas9 system combined with nanotechnology for clinical translation in the future.

References

1

Barrangou, R. The roles of CRISPR-Cas systems in adaptive immunity and beyond. Curr. Opin. Immunol. 2015, 32, 36-41.

2

Barrangou, R.; Fremaux, C.; Deveau, H.; Richards, M.; Boyaval, P.; Moineau, S.; Romero, D. A.; Horvath, P. CRISPR provides acquired resistance against viruses in prokaryotes. Science 2007, 315, 1709-1712.

3

Zhang, F.; Wen, Y.; Guo, X. CRISPR/Cas9 for genome editing: Progress, implications and challenges. Hum. Mol. Genet. 2014, 23, R40-R46.

4

Atmos, J. Diagram of the possible mechanism for CRISPR. Photo: Wikipedia. 2009.

5

Mojica, F. J. M.; Díez-Villaseñor, C.; Soria, E.; Juez, G. Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Mol. Microbiol. 2000, 36, 244-246.

6

Deltcheva, E.; Chylinski, K.; Sharma, C. M.; Gonzales, K.; Chao, Y. J.; Pirzada, Z. A.; Eckert, M. R.; Vogel, J.; Charpentier, E. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase Ⅲ. Nature 2011, 471, 602-607.

7

Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J. A.; Charpentier, E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012, 337, 816-821.

8

Cong, L.; Ran, F. A.; Cox, D.; Lin, S. L.; Barretto, R.; Habib, N.; Hsu, P. D.; Wu, X. B.; Jiang, W. Y.; Marraffini, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013, 339, 819-823.

9

Wu, Y. X.; Zhou, H.; Fan, X. Y.; Zhang, Y.; Zhang, M.; Wang, Y. H.; Xie, Z. F.; Bai, M. Z.; Yin, Q.; Liang, D. et al. Correction of a genetic disease by CRISPR-Cas9-mediated gene editing in mouse spermatogonial stem cells. Cell Res. 2015, 25, 67-79.

10

Cho, S. W.; Kim, S.; Kim, J. M.; Kim, J. S. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat. Biotechnol. 2013, 31, 230-232.

11

Bikard, D.; Euler, C. W.; Jiang, W. Y.; Nussenzweig, P. M.; Goldberg, G. W.; Duportet, X.; Fischetti, V. A.; Marraffini, L. A. Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. Nat. Biotechnol. 2014, 32, 1146-1150.

12

Hwang, W. Y.; Fu, Y. F.; Reyon, D.; Maeder, M. L.; Tsai, S. Q.; Sander, J. D.; Peterson, R. T.; Yeh, J. R.; Joung, J. K. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat. Biotechnol. 2013, 31, 227-229.

13

Nekrasov, V.; Staskawicz, B.; Weigel, D.; Jones, J. D. G.; Kamoun, S. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat. Biotechnol. 2013, 31, 691-693.

14

Wu, Y. X.; Liang, D.; Wang, Y. H.; Bai, M. Z.; Tang, W.; Bao, S. M.; Yan, Z. Q.; Li, D. S.; Li, J. S. Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell Stem Cell 2013, 13, 659-662.

15

Long, C. Z.; McAnally, J. R.; Shelton, J. M.; Mireault, A. A.; Bassel-Duby, R.; Olson, E. N. Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA. Science 2014, 345, 1184-1188.

16

Schwank, G.; Koo, B. K.; Sasselli, V.; Dekkers, J. F.; Heo, I.; Demircan, T.; Sasaki, N.; Boymans, S.; Cuppen, E.; van der Ent, C. K. et al. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell 2013, 13, 653-658.

17

Yin, H.; Xue, W.; Chen, S. D.; Bogorad, R. L.; Benedetti, E.; Grompe, M.; Koteliansky, V.; Sharp, P. A.; Jacks, T.; Anderson, D. G. Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat. Biotechnol. 2014, 32, 551-553.

18

Yin, H.; Song, C. Q.; Dorkin, J. R.; Zhu, L. J.; Li, Y. X.; Wu, Q. Q.; Park, A.; Yang, J.; Suresh, S.; Bizhanova, A. et al. Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nat. Biotechnol. 2016, 34, 328-333.

19

Ran, F. A.; Cong, L.; Yan, W. X.; Scott, D. A.; Gootenberg, J. S.; Kriz, A. J.; Zetsche, B.; Shalem, O.; Wu, X. B.; Makarova, K. S. et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature 2015, 520, 186-191.

20

Antal, C. E.; Hudson, A. M.; Kang, E.; Zanca, C.; Wirth, C.; Stephenson, N. L.; Trotter, E. W.; Gallegos, L. L.; Miller, C. J.; Furnari, F. B. et al. Cancer-associated protein kinase C mutations reveal kinase's role as tumor suppressor. Cell 2015, 160, 489-502.

21

Ye, L.; Wang, J. M.; Beyer, A. I.; Teque, F.; Cradick, T. J.; Qi, Z. X.; Chang, J. C.; Bao, G.; Muench, M. O.; Yu, J. W. et al. Seamless modification of wild-type induced pluripotent stem cells to the natural CCR5Δ32 mutation confers resistance to HⅣ infection. Proc Natl Acad Sci USA 2014, 111, 9591-9596.

22

Zhen, S.; Hua, L.; Liu, Y. H.; Gao, L. C.; Fu, J.; Wan, D. Y.; Dong, L. H.; Song, H. F.; Gao, X. Harnessing the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated Cas9 system to disrupt the hepatitis B virus. Gene Ther. 2015, 22, 404-412.

23

Kennedy, E. M.; Kornepati, A. V. R.; Goldstein, M.; Bogerd, H. P.; Poling, B. C.; Whisnant, A. W.; Kastan, M. B.; Cullen, B. R. Inactivation of the human papillomavirus E6 or E7 gene in cervical carcinoma cells by using a bacterial CRISPR/Cas RNA-guided endonuclease. J. Virol. 2014, 88, 11965-11972.

24

Gilbert, L. A.; Larson, M. H.; Morsut, L.; Liu, Z. R.; Brar, G. A.; Torres, S. E.; Stern-Ginossar, N.; Brandman, O.; Whitehead, E. H.; Doudna, J. A. et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 2013, 154, 442-451.

25

Komor, A. C.; Badran, A. H.; Liu, D. R. CRISPR-based technologies for the manipulation of eukaryotic genomes. Cell 2017, 168, 20-36.

26

Chen, B. H.; Gilbert, L. A.; Cimini, B. A.; Schnitzbauer, J.; Zhang, W.; Li, G. W.; Park, J.; Blackburn, E. H.; Weissman, J. S.; Qi, L. S. et al. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 2013, 155, 1479-1491.

27

Fujita, T.; Fujii, H. Efficient isolation of specific genomic regions and identification of associated proteins by engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP) using CRISPR. Biochem. Biophys. Res. Commun. 2013, 439, 132-136.

28

Zetsche, B.; Gootenberg, J. S.; Abudayyeh, O. O.; Slaymaker, I. M.; Makarova, K. S.; Essletzbichler, P.; Volz, S. E.; Joung, J.; van der Oost, J.; Regev, A. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 2015, 163, 759-771.

29

Li, B.; Zhao, W. Y.; Luo, X.; Zhang, X. F.; Li, C. L.; Zeng, C. X.; Dong, Y. Z. Engineering CRISPR-Cpf1 crRNAs and mRNAs to maximize genome editing efficiency. Nat. Biomed. Eng. 2017, 1, 0066.

30

Abudayyeh, O. O.; Gootenberg, J. S.; Essletzbichler, P.; Han, S.; Joung, J.; Belanto, J. J.; Verdine, V.; Cox, D. B. T.; Kellner, M. J.; Regev, A. et al. RNA targeting with CRISPR-Cas13. Nature 2017, 550, 280-284.

31

Chen, J. S.; Ma, E. B.; Harrington, L. B.; Da Costa, M.; Tian, X. R.; Palefsky, J. M.; Doudna, J. A. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science 2018, 360, 436-439.

32

Liu, C.; Zhang, L.; Liu, H.; Cheng, K. Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications. J. Control. Release 2017, 266, 17-26.

33

Grimm, D.; Kay, M. A. From virus evolution to vector revolution: Use of naturally occurring serotypes of adeno-associated virus (AAV) as novel vectors for human gene therapy. Curr. Gene Ther. 2003, 3, 281-304.

34

Niidome, T.; Huang, L. Gene therapy progress and prospects: Nonviral vectors. Gene Ther. 2002, 9, 1647-1652.

35

Makarova, K. S.; Wolf, Y. I.; Alkhnbashi, O. S.; Costa, F.; Shah, S. A.; Saunders, S. J.; Barrangou, R.; Brouns, S. J. J.; Charpentier, E.; Haft, D. H. et al. An updated evolutionary classification of CRISPR-Cas systems. Nat. Rev. Microbiol. 2015, 13, 722-736.

36

Leenay, R. T.; Maksimchuk, K. R.; Slotkowski, R. A.; Agrawal, R. N.; Gomaa, A. A.; Briner, A. E.; Barrangou, R.; Beisel, C. L. Identifying and visualizing functional PAM diversity across CRISPR-Cas systems. Mol. Cell 2016, 62, 137-147.

37

Shmakov, S.; Smargon, A.; Scott, D.; Cox, D.; Pyzocha, N.; Yan, W.; Abudayyeh, O. O.; Gootenberg, J. S.; Makarova, K. S.; Wolf, Y. I. et al. Diversity and evolution of class 2 CRISPR-Cas systems. Nat. Rev. Microbiol. 2017, 15, 169-182.

38

Mohanraju, P.; Makarova, K. S.; Zetsche, B.; Zhang, F.; Koonin, E. V.; van der Oost, J. Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems. Science 2016, 353, aad5147.

39

Garneau, J. E.; Dupuis, M. È.; Villion, M.; Romero, D. A.; Barrangou, R.; Boyaval, P.; Fremaux, C.; Horvath, P.; Magadán, A. H.; Moineau, S. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 2010, 468, 67-71.

40

Makarova, K. S.; Haft, D. H.; Barrangou, R.; Brouns, S. J. J.; Charpentier, E.; Horvath, P.; Moineau, S.; Mojica, F. J. M.; Wolf, Y. I.; Yakunin, A. F. et al. Evolution and classification of the CRISPR-Cas systems. Nat. Rev. Microbiol. 2011, 9, 467-477.

41

Marraffini, L. A.; Sontheimer, E. J. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 2008, 322, 1843-1845.

42

Brouns, S. J. J.; Jore, M. M.; Lundgren, M.; Westra, E. R.; Slijkhuis, R. J. H.; Snijders, A. P. L.; Dickman, M. J.; Makarova, K. S.; Koonin, E. V.; van der Oost, J. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 2008, 321, 960-964.

43

Perez, E. E.; Wang, J. B.; Miller, J. C.; Jouvenot, Y.; Kim, K. A.; Liu, O.; Wang, N.; Lee, G.; Bartsevich, V. V.; Lee, Y. L. et al. Establishment of HⅣ-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nat. Biotechnol. 2008, 26, 808-816.

44

Chen, F. Q.; Pruett-Miller, S. M.; Huang, Y. P.; Gjoka, M.; Duda, K.; Taunton, J.; Collingwood, T. N.; Frodin, M.; Davis, G. D. High-frequency genome editing using ssDNA oligonucleotides with zinc-finger nucleases. Nat. Methods 2011, 8, 753-755.

45

Saleh-Gohari, N.; Helleday, T. Conservative homologous recombination preferentially repairs DNA double-strand breaks in the S phase of the cell cycle in human cells. Nucleic Acids Res. 2004, 32, 3683-3688.

46

Jones, C. H.; Chen, C. K.; Ravikrishnan, A.; Rane, S.; Pfeifer, B. A. Overcoming nonviral gene delivery barriers: Perspective and future. Mol. Pharm. 2013, 10, 4082-4098.

47

Kamimura, K.; Suda, T.; Zhang, G. S.; Liu, D. X. Advances in gene delivery systems. Pharm. Med. 2011, 25, 293-306.

48

Chira, S.; Gulei, D.; Hajitou, A.; Zimta, A. A.; Cordelier, P.; Berindan-Neagoe, I. CRISPR/Cas9: Transcending the reality of genome editing. Mol. Ther. Nucleic Acids 2017, 7, 211-222.

49

Ran, F. A.; Hsu, P. D.; Wright, J.; Agarwala, V.; Scott, D. A.; Zhang, F. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 2013, 8, 2281-2308.

50

Niu, Y. Y.; Shen, B.; Cui, Y. Q.; Chen, Y. C.; Wang, J. Y.; Wang, L.; Kang, Y.; Zhao, X. Y.; Si, W.; Li, W. et al. Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell 2014, 156, 836-843.

51

Zuris, J. A.; Thompson, D. B.; Shu, Y. L.; Guilinger, J. P.; Bessen, J. L.; Hu, J. H.; Maeder, M. L.; Joung, J. K.; Chen, Z. Y.; Liu, D. R. Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat. Biotechnol. 2015, 33, 73-80.

52

Hughes, T. S.; Langer, S. J.; Virtanen, S. I.; Chavez, R. A.; Watkins, L. R.; Milligan, E. D.; Leinwand, L. A. Immunogenicity of intrathecal plasmid gene delivery: Cytokine release and effects on transgene expression. J. Gene Med. 2009, 11, 782-790.

53

Hemmi, H.; Takeuchi, O.; Kawai, T.; Kaisho, T.; Sato, S.; Sanjo, H.; Matsumoto, M.; Hoshino, K.; Wagner, H.; Takeda, K. et al. A toll-like receptor recognizes bacterial DNA. Nature 2000, 408, 740-745.

54

Shen, B.; Zhang, W. S.; Zhang, J.; Zhou, J. K.; Wang, J. Y.; Chen, L.; Wang, L.; Hodgkins, A.; Iyer, V.; Huang, X. X. et al. Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects. Nat. Methods 2014, 11, 399-402.

55

Chang, N. N.; Sun, C. H.; Gao, L.; Zhu, D.; Xu, X. F.; Zhu, X. J.; Xiong, J. W.; Xi, J. J. Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos. Cell Res. 2013, 23, 465-472.

56

Wu, Y. X.; Liang, D.; Wang, Y. H.; Bai, M. Z.; Tang, W.; Bao, S. M.; Yan, Z. Q.; Li, D. S.; Li, J. S. Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell Stem Cell 2013, 13, 659-662.

57

Ran, F. A.; Hsu, P. D.; Lin, C. Y.; Gootenberg, J. S.; Konermann, S.; Trevino, A. E.; Scott, D. A.; Inoue, A.; Matoba, S.; Zhang, Y. et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 2013, 154, 1380-1389.

58

Schumann, K.; Lin, S.; Boyer, E.; Simeonov, D. R.; Subramaniam, M.; Gate, R. E.; Haliburton, G. E.; Ye, C. J.; Bluestone, J. A.; Doudna, J. A. et al. Generation of knock-in primary human T cells using Cas9 ribonucleoproteins. Proc Natl Acad Sci USA 2015, 112, 10437-10442.

59

Peer, D.; Karp, J. M.; Hong, S.; Farokhzad, O. C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2007, 2, 751-760.

60

Chew, W. L.; Tabebordbar, M.; Cheng, J. K. W.; Mali, P.; Wu, E. Y.; Ng, A. H. M.; Zhu, K. X.; Wagers, A. J.; Church, G. M. A multifunctional AAV-CRISPR-Cas9 and its host response. Nat. Methods 2016, 13, 868-874.

61

Ryu, N.; Kim, M. A.; Park, D.; Lee, B.; Kim, Y. R.; Kim, K. H.; Baek, J. I.; Ki, W. J.; Lee, K. Y.; Kim, U. K. Effective PEI-mediated delivery of CRISPR-Cas9 complex for targeted gene therapy. Nanomedicine 2018, 14, 2095-2102.

62

Zhang, Z.; Wan, T.; Chen, Y. X.; Chen, Y.; Sun, H. W.; Cao, T. Q.; Zhou, S. Y.; Tang, G. P.; Wu, C. B.; Ping, Y. et al. Cationic polymer-mediated CRISPR/Cas9 plasmid delivery for genome editing. Macromol. Rapid. Commun. 2019, 40, 1800068.

63

Sun, W. J.; Ji, W. Y.; Hall, J. M.; Hu, Q. Y.; Wang, C.; Beisel, C. L.; Gu, Z. Self-assembled DNA nanoclews for the efficient delivery of CRISPR-Cas9 for genome editing. Angew. Chem., Int. Ed. 2015, 54, 12029-12033.

64

Liu, Q.; Zhao, K.; Wang, C.; Zhang, Z. Z.; Zheng, C. X.; Zhao, Y.; Zheng, Y. D.; Liu, C. Y.; An, Y. L.; Shi, L. Q. et al. Multistage delivery nanoparticle facilitates efficient CRISPR/dCas9 activation and tumor growth suppression in vivo. Adv. Sci. 2019, 6, 1801423.

65

Kang, Y. K.; Kwon, K.; Ryu, J. S.; Lee, H. N.; Park, C.; Chung, H. J. Nonviral genome editing based on a polymer-derivatized CRISPR nanocomplex for targeting bacterial pathogens and antibiotic resistance. Bioconjug. Chem. 2017, 28, 957-967.

66

Smith, T. T.; Stephan, S. B.; Moffett, H. F.; McKnight, L. E.; Ji, W. H.; Reiman, D.; Bonagofski, E.; Wohlfahrt, M. E.; Pillai, S. P. S.; Stephan, M. T. In situ programming of leukaemia-specific T cells using synthetic DNA nanocarriers. Nat. Nanotechnol. 2017, 12, 813-820.

67

Moffett, H. F.; Coon, M. E.; Radtke, S.; Stephan, S. B.; McKnight, L.; Lambert, A.; Stoddard, B. L.; Kiem, H. P.; Stephan, M. T. Hit-and-run programming of therapeutic cytoreagents using mRNA nanocarriers. Nat. Commun. 2017, 8, 389.

68

Zhu, D.; Shen, H.; Tan, S. W.; Hu, Z.; Wang, L. M.; Yu, L.; Tian, X.; Ding, W. C.; Ren, C.; Gao, C. et al. Nanoparticles Based on poly (β-Amino Ester) and HPV16-targeting CRISPR/shRNA as potential drugs for HPV16-related cervical malignancy. Mol. Ther. 2018, 26, 2443-2455.

69

Liu, Y.; Chen, D.; Li, J. L.; Xia, D. N.; Yu, M. R.; Tao, J. S.; Zhang, X. X.; Li, L.; Gan, Y. NPC1L1-targeted cholesterol-grafted poly(β-amino ester)/pDNA complexes for oral gene delivery. Adv. Healthc. Mater. 2019, 8, 1800934.

70

Liu, S.; Jia, H. T.; Yang, J. X.; Pan, J. P.; Liang, H. Y.; Zeng, L. H.; Zhou, H.; Chen, J. T.; Guo, T. Y. Zinc coordinated cationic polymers break up the paradox between low molecular weight and high transfection efficacy. Biomacromolecules 2018, 19, 4270-4276.

71

Chen, G. J.; Ma, B.; Wang, Y. Y.; Gong, S. Q. A universal GSH-responsive nanoplatform for the delivery of DNA, mRNA, and Cas9/sgRNA ribonucleoprotein. ACS Appl. Mater. Interfaces 2018, 10, 18515-18523.

72

Luo, Y. L.; Xu, C. F.; Li, H. J.; Cao, Z. T.; Liu, J.; Wang, J. L.; Du, X. J.; Yang, X. Z.; Gu, Z.; Wang, J. Macrophage-specific in vivo gene editing using cationic lipid-assisted polymeric nanoparticles. ACS Nano 2018, 12, 994-1005.

73

Xu, C. F.; Lu, Z. D.; Luo, Y. L.; Liu, Y.; Cao, Z. T.; Shen, S.; Li, H. J.; Liu, J.; Chen, K. G.; Chen, Z. Y. et al. Targeting of NLRP3 inflammasome with gene editing for the amelioration of inflammatory diseases. Nat. Commun. 2018, 9, 4092.

74

Liu, Y.; Cao, Z. T.; Xu, C. F.; Lu, Z. D.; Luo, Y. L.; Wang, J. Optimization of lipid-assisted nanoparticle for disturbing neutrophils-related inflammation. Biomaterials 2018, 172, 92-104.

75

Liu, Y.; Zhao, G.; Xu, C. F.; Luo, Y. L.; Lu, Z. D.; Wang, J. Systemic delivery of CRISPR/Cas9 with PEG-PLGA nanoparticles for chronic myeloid leukemia targeted therapy. Biomater. Sci. 2018, 6, 1592-1603.

76

Li, M.; Fan, Y. N.; Chen, Z. Y.; Luo, Y. L.; Wang, Y. C.; Lian, Z. X.; Xu, C. F.; Wang, J. Optimized nanoparticle-mediated delivery of CRISPR-Cas9 system for B cell intervention. Nano Res. 2018, 11, 6270-6282.

77

Wang, M.; Zuris, J. A.; Meng, F. T.; Rees, H.; Sun, S.; Deng, P.; Han, Y.; Gao, X.; Pouli, D.; Wu, Q. et al. Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles. Proc Nati Acad Sci USA 2016, 113, 2868-2873.

78

Finn, J. D.; Smith, A. R.; Patel, M. C.; Shaw, L.; Youniss, M. R.; van Heteren, J.; Dirstine, T.; Ciullo, C.; Lescarbeau, R.; Seitzer, J. et al. A single administration of CRISPR/Cas9 lipid nanoparticles achieves robust and persistent in vivo genome editing. Cell Rep. 2018, 22, 2227-2235.

79

Zhang, L. M.; Wang, P.; Feng, Q.; Wang, N. X.; Chen, Z. T.; Huang, Y. Y.; Zheng, W. F.; Jiang, X. Y. Lipid nanoparticle-mediated efficient delivery of CRISPR/Cas9 for tumor therapy. NPG Asia Mat. 2017, 9, e441.

80

Chen, Z. M.; Liu, F. Y.; Chen, Y. K.; Liu, J.; Wang, X. Y.; Chen, A. T.; Deng, G.; Zhang, H. Y.; Liu, J.; Hong, Z. Y. et al. Targeted delivery of CRISPR/Cas9-mediated cancer gene therapy via liposome-templated hydrogel nanoparticles. Adv. Funct. Mater. 2017, 27, 1703036.

81

Jiang, C.; Mei, M.; Li, B.; Zhu, X. R.; Zu, W. H.; Tian, Y. J.; Wang, Q. N.; Guo, Y.; Dong, Y. Z.; Tan, X. A non-viral CRISPR/Cas9 delivery system for therapeutically targeting HBV DNA and pcsk9 in vivo. Cell Res. 2017, 27, 440-443.

82

He, Z. Y.; Zhang, Y. G.; Yang, Y. H.; Ma, C. C.; Wang, P.; Du, W.; Li, L.; Xiang, R.; Song, X. R.; Zhao, X. et al. Q. In vivo ovarian cancer gene therapy using CRISPR-Cas9. Hum. Gene Ther. 2018, 29, 223-233.

83

Liang, C.; Li, F. F.; Wang, L. Y.; Zhang, Z. K.; Wang, C.; He, B.; Li, J.; Chen, Z. H.; Shaikh, A. B.; Liu, J. et al. Tumor cell-targeted delivery of CRISPR/Cas9 by aptamer-functionalized lipopolymer for therapeutic genome editing of VEGFA in osteosarcoma. Biomaterials 2017, 147, 68-85.

84

Mircetic, J.; Steinebrunner, I.; Ding, L.; Fei, J. F.; Bogdanova, A.; Drechsel, D.; Buchholz, F. Purified Cas9 fusion proteins for advanced genome manipulation. Small Methods 2017, 1, 1600052.

85

Mout, R.; Ray, M.; Tonga, G. Y.; Lee, Y. W.; Tay, T.; Sasaki, K.; Rotello, V. M. Direct cytosolic delivery of CRISPR/Cas9-ribonucleoprotein for efficient gene editing. ACS Nano 2017, 11, 2452-2458.

86

Lee, K.; Conboy, M.; Park, H. M.; Jiang, F. G.; Kim, H. J.; Dewitt, M. A.; Mackley, V. A.; Chang, K.; Rao, A.; Skinner, C. et al. Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair. Nat. Biomed. Eng. 2017, 1, 889-901.

87

Wang, P.; Zhang, L. M.; Zheng, W. F.; Cong, L. M.; Guo, Z. R.; Xie, Y. Z. Y.; Wang, L.; Tang, R. B.; Feng, Q.; Hamada, Y. et al. Thermo-triggered release of CRISPR-Cas9 system by lipid-encapsulated gold nanoparticles for tumor therapy. Angew. Chem., Int. Ed. 2018, 57, 1491-1496.

88

Ramakrishna, S.; Kwaku Dad, A. B.; Beloor, J.; Gopalappa, R.; Lee, S. K.; Kim, H. Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA. Genome Res. 2014, 24, 1020-1027.

89

Wang, H. X.; Song, Z. Y.; Lao, Y. H.; Xu, X.; Gong, J.; Cheng, D.; Chakraborty, S.; Park, J. S.; Li, M. Q.; Huang, D. T. et al. Nonviral gene editing via CRISPR/Cas9 delivery by membrane-disruptive and endosomolytic helical polypeptide. Proc Natl Acad Sci USA 2018, 115, 4903-4908.

90

Kim, S. M.; Yang, Y.; Oh, S. J.; Hong, Y.; Seo, M.; Jang, M. Cancer-derived exosomes as a delivery platform of CRISPR/Cas9 confer cancer cell tropism-dependent targeting. J. Control. Release 2017, 266, 8-16.

91

Li, Z. L.; Zhou, X. Y.; Wei, M. Y.; Gao, X. T.; Zhao, L. B.; Shi, R. J.; Sun, W. Q.; Duan, Y. Y.; Yang, G. D.; Yuan, L. J. In vitro and in vivo RNA inhibition by CD9-HuR functionalized exosomes encapsulated with miRNA or CRISPR/dCas9. Nano Lett. 2019, 19, 19-28.

92

Lin, Y.; Wu, J. H.; Gu, W. H.; Huang, Y. L.; Tong, Z. C.; Huang, L. J.; Tan, J. L. Exosome-liposome hybrid nanoparticles deliver CRISPR/Cas9 system in MSCs. Adv. Sci. 2018, 5, 1700611.

93

Usman, W. M.; Pham, T. C.; Kwok, Y. Y.; Vu, L. T.; Ma, V.; Peng, B. Y.; Chan, Y. S.; Wei, L. K.; Chin, S. M.; Azad, A. et al. Efficient RNA drug delivery using red blood cell extracellular vesicles. Nat. Commun. 2018, 9, 2359.

94

Li, L.; Song, L. J.; Liu, X. W.; Yang, X.; Li, X.; He, T.; Wang, N.; Yang, S. L. X.; Yu, C.; Yin, T. et al. Artificial virus delivers CRISPR-Cas9 system for genome editing of cells in mice. ACS Nano 2017, 11, 95-111.

95

Yue, H. H.; Zhou, X. M.; Cheng, M.; Xing, D. Graphene oxide-mediated Cas9/sgRNA delivery for efficient genome editing. Nanoscale 2018, 10, 1063-1071.

96

Zhou, W. H.; Cui, H. D.; Ying, L. M.; Yu, X. F. Enhanced cytosolic delivery and release of CRISPR/Cas9 by black phosphorus nanosheets for genome editing. Angew. Chem., Int. Ed. 2018, 57, 10268-10272.

97

Alsaiari, S. K.; Patil, S.; Alyami, M.; Alamoudi, K. O.; Aleisa, F. A.; Merzaban, J. S.; Li, M.; Khashab, N. M. Endosomal escape and delivery of CRISPR/Cas9 genome editing machinery enabled by nanoscale zeolitic imidazolate framework. J. Am. Chem. Soc. 2018, 140, 143-146.

98

Yang, X. T.; Tang, Q.; Jiang, Y.; Zhang, M. N.; Wang, M.; Mao, L. Q. Nanoscale ATP-responsive zeolitic imidazole framework-90 as a general platform for cytosolic protein delivery and genome editing. J. Am. Chem. Soc. 2019, 141, 3782-3786.

99

Mout, R.; Ray, M.; Lee, Y. W.; Scaletti, F.; Rotello, V. M. In vivo delivery of CRISPR/Cas9 for therapeutic gene editing: Progress and challenges. Bioconjug. Chem. 2017, 28, 880-884.

100

Wang, H. X.; Li, M. Q.; Lee, C. M.; Chakraborty, S.; Kim, H. W.; Bao, G.; Leong, K. M. CRISPR/Cas9-based genome editing for disease modeling and therapy: Challenges and opportunities for nonviral delivery. Chem. Rev. 2017, 117, 9874-9906.

101

Hendel, A.; Bak, R. O.; Clark, J. T.; Kennedy, A. B.; Ryan, D. E.; Roy, S.; Steinfeld, I.; Lunstad, B. D.; Kaiser, R. J.; Wilkens, A. B. et al. Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells. Nat. Biotechnol. 2015, 33, 985-989.

102

Rahdar, M.; McMahon, M. A.; Prakash, T. P.; Swayze, E. E.; Bennett, C. F.; Cleveland, D. W. Synthetic CRISPR RNA-Cas9-guided genome editing in human cells. Proc Natl Acad Sci USA 2015, 112, E7110-E7117.

103

Zhang, J. J.; Mao, F.; Niu, G.; Peng, L.; Lang, L. X.; Li, F.; Ying, H. Y.; Wu, H. W.; Pan, B. J.; Zhu, Z. H. et al. 68Ga-BBN-RGD PET/CT for GRPR and integrin αvβ3 imaging in patients with breast cancer. Theranostics 2018, 8, 1121-1130.

104

Amin, M.; Mansourian, M.; Koning, G. A.; Badiee, A.; Jaafari, M. R.; Ten Hagen, T. L. M. Development of a novel cyclic RGD peptide for multiple targeting approaches of liposomes to tumor region. J. Control. Release 2015, 220, 308-315.

105

Jinek, M.; Jiang, F. G.; Taylor, D. W.; Sternberg, S. H.; Kaya, E.; Ma, E. B.; Anders, C.; Hauer, M.; Zhou, K. H.; Lin, S. et al. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science 2014, 343, 1247997.

106

Dobrovolskaia, M. A.; Aggarwal, P.; Hall, J. B.; McNeil, S. E. Preclinical studies to understand nanoparticle interaction with the immune system and its potential effects on nanoparticle biodistribution. Mol. Pharm. 2008, 5, 487-495.

107

Aggarwal, P.; Hall, J. B.; McLeland, C. B.; Dobrovolskaia, M. A.; McNeil, S. E. Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv. Drug Deliv. Rev. 2009, 61, 428-437.

108

Kobayashi, H.; Watanabe, R.; Choyke, P. L. Improving conventional enhanced permeability and retention (EPR) effects; What is the appropriate target? Theranostics 2014, 4, 81-89.

109

Lu, M. Q.; Ho, Y. P.; Grigsby, C. L.; Nawaz, A. A.; Leong, K. W.; Huang, T. J. Three-dimensional hydrodynamic focusing method for polyplex synthesis. ACS Nano 2014, 8, 332-339.

110

Li, L.; Hu, S.; Chen, X. Y. Non-viral delivery systems for CRISPR/ Cas9-based genome editing: Challenges and opportunities. Biomaterials 2018, 171, 207-218.

111

Strecker, J.; Jones, S.; Koopal, B.; Schmid-Burgk, J.; Zetsche, B.; Gao, L. Y.; Makarova, K. S.; Koonin, E. V.; Zhang, F. Engineering of CRISPR-Cas12b for human genome editing. Nat. Commun. 2019, 10, 212.

112

Wan, T.; Niu, D.; Wu, C. B.; Xu, F. J.; Church, G.; Ping, Y. Material solutions for delivery of CRISPR/Cas-based genome editing tools: Current status and future outlook. Mater. Today 2019, 26, 40-66.

Nano Research
Pages 2437-2450
Cite this article:
Deng H, Huang W, Zhang Z. Nanotechnology based CRISPR/Cas9 system delivery for genome editing: Progress and prospect. Nano Research, 2019, 12(10): 2437-2450. https://doi.org/10.1007/s12274-019-2465-x
Topics:

906

Views

57

Crossref

N/A

Web of Science

52

Scopus

3

CSCD

Altmetrics

Received: 13 April 2019
Revised: 11 June 2019
Accepted: 17 June 2019
Published: 11 July 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return